scholarly journals A multiresolution framework to characterize single-cell state landscapes

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahin Mohammadi ◽  
Jose Davila-Velderrain ◽  
Manolis Kellis

Abstract Dissecting the cellular heterogeneity embedded in single-cell transcriptomic data is challenging. Although many methods and approaches exist, identifying cell states and their underlying topology is still a major challenge. Here, we introduce the concept of multiresolution cell-state decomposition as a practical approach to simultaneously capture both fine- and coarse-grain patterns of variability. We implement this concept in ACTIONet, a comprehensive framework that combines archetypal analysis and manifold learning to provide a ready-to-use analytical approach for multiresolution single-cell state characterization. ACTIONet provides a robust, reproducible, and highly interpretable single-cell analysis platform that couples dominant pattern discovery with a corresponding structural representation of the cell state landscape. Using multiple synthetic and real data sets, we demonstrate ACTIONet’s superior performance relative to existing alternatives. We use ACTIONet to integrate and annotate cells across three human cortex data sets. Through integrative comparative analysis, we define a consensus vocabulary and a consistent set of gene signatures discriminating against the transcriptomic cell types and subtypes of the human prefrontal cortex.

2019 ◽  
Author(s):  
Shahin Mohammadi ◽  
Jose Davila-Velderrain ◽  
Manolis Kellis

AbstractDissecting the cellular heterogeneity embedded in single-cell transcriptomic data is challenging. Although a large number of methods and approaches exist, robustly identifying underlying cell states and their associations is still a major challenge; given the nonexclusive and dynamic influence of multiple unknown sources of variability, the existence of state continuum at the time-scale of observation, and the inevitable snapshot nature of experiments. As a way to address some of these challenges, here we introduce ACTIONet, a comprehensive framework that combines archetypal analysis and network theory to provide a ready-to-use analytical approach for multiresolution single-cell state characterization. ACTIONet uses multilevel matrix decomposition and network reconstruction to simultaneously learn cell state patterns, quantify single-cell states, and reconstruct a reproducible structural representation of the transcriptional state space that is geometrically mapped to a color space. A color-enhanced quantitative view of cell states enables novel visualization, prediction, and annotation approaches. Using data from multiple tissues, organisms, and developmental conditions, we illustrate how ACTIONet facilitates the reconstruction and exploration of single-cell state landscapes.


2020 ◽  
Author(s):  
N. Kakava-Georgiadou ◽  
J.F. Severens ◽  
A.M. Jørgensen ◽  
K.M. Garner ◽  
M.C.M Luijendijk ◽  
...  

AbstractHypothalamic nuclei which regulate homeostatic functions express leptin receptor (LepR), the primary target of the satiety hormone leptin. Single-cell RNA sequencing (scRNA-seq) has facilitated the discovery of a variety of hypothalamic cell types. However, low abundance of LepR transcripts prevented further characterization of LepR cells. Therefore, we perform scRNA-seq on isolated LepR cells and identify eight neuronal clusters, including three uncharacterized Trh-expressing populations as well as 17 non-neuronal populations including tanycytes, oligodendrocytes and endothelial cells. Food restriction had a major impact on Agrp neurons and changed the expression of obesity-associated genes. Multiple cell clusters were enriched for GWAS signals of obesity. We further explored changes in the gene regulatory landscape of LepR cell types. We thus reveal the molecular signature of distinct populations with diverse neurochemical profiles, which will aid efforts to illuminate the multi-functional nature of leptin’s action in the hypothalamus.


2019 ◽  
Vol 21 (5) ◽  
pp. 1581-1595 ◽  
Author(s):  
Xinlei Zhao ◽  
Shuang Wu ◽  
Nan Fang ◽  
Xiao Sun ◽  
Jue Fan

Abstract Single-cell RNA sequencing (scRNA-seq) has been rapidly developing and widely applied in biological and medical research. Identification of cell types in scRNA-seq data sets is an essential step before in-depth investigations of their functional and pathological roles. However, the conventional workflow based on clustering and marker genes is not scalable for an increasingly large number of scRNA-seq data sets due to complicated procedures and manual annotation. Therefore, a number of tools have been developed recently to predict cell types in new data sets using reference data sets. These methods have not been generally adapted due to a lack of tool benchmarking and user guidance. In this article, we performed a comprehensive and impartial evaluation of nine classification software tools specifically designed for scRNA-seq data sets. Results showed that Seurat based on random forest, SingleR based on correlation analysis and CaSTLe based on XGBoost performed better than others. A simple ensemble voting of all tools can improve the predictive accuracy. Under nonideal situations, such as small-sized and class-imbalanced reference data sets, tools based on cluster-level similarities have superior performance. However, even with the function of assigning ‘unassigned’ labels, it is still challenging to catch novel cell types by solely using any of the single-cell classifiers. This article provides a guideline for researchers to select and apply suitable classification tools in their analysis workflows and sheds some lights on potential direction of future improvement on classification tools.


2019 ◽  
Author(s):  
Chenling Xu ◽  
Romain Lopez ◽  
Edouard Mehlman ◽  
Jeffrey Regier ◽  
Michael I. Jordan ◽  
...  

AbstractAs single-cell transcriptomics becomes a mainstream technology, the natural next step is to integrate the accumulating data in order to achieve a common ontology of cell types and states. However, owing to various nuisance factors of variation, it is not straightforward how to compare gene expression levels across data sets and how to automatically assign cell type labels in a new data set based on existing annotations. In this manuscript, we demonstrate that our previously developed method, scVI, provides an effective and fully probabilistic approach for joint representation and analysis of cohorts of single-cell RNA-seq data sets, while accounting for uncertainty caused by biological and measurement noise. We also introduce single-cell ANnotation using Variational Inference (scANVI), a semi-supervised variant of scVI designed to leverage any available cell state annotations — for instance when only one data set in a cohort is annotated, or when only a few cells in a single data set can be labeled using marker genes. We demonstrate that scVI and scANVI compare favorably to the existing methods for data integration and cell state annotation in terms of accuracy, scalability, and adaptability to challenging settings such as a hierarchical structure of cell state labels. We further show that different from existing methods, scVI and scANVI represent the integrated datasets with a single generative model that can be directly used for any probabilistic decision making task, using differential expression as our case study. scVI and scANVI are available as open source software and can be readily used to facilitate cell state annotation and help ensure consistency and reproducibility across studies.


2018 ◽  
Author(s):  
Jingtian Zhou ◽  
Jianzhu Ma ◽  
Yusi Chen ◽  
Chuankai Cheng ◽  
Bokan Bao ◽  
...  

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.


Author(s):  
Boxun Li ◽  
Gary C. Hon

As we near a complete catalog of mammalian cell types, the capability to engineer specific cell types on demand would transform biomedical research and regenerative medicine. However, the current pace of discovering new cell types far outstrips our ability to engineer them. One attractive strategy for cellular engineering is direct reprogramming, where induction of specific transcription factor (TF) cocktails orchestrates cell state transitions. Here, we review the foundational studies of TF-mediated reprogramming in the context of a general framework for cell fate engineering, which consists of: discovering new reprogramming cocktails, assessing engineered cells, and revealing molecular mechanisms. Traditional bulk reprogramming methods established a strong foundation for TF-mediated reprogramming, but were limited by their small scale and difficulty resolving cellular heterogeneity. Recently, single-cell technologies have overcome these challenges to rapidly accelerate progress in cell fate engineering. In the next decade, we anticipate that these tools will enable unprecedented control of cell state.


2021 ◽  
pp. 1-8
Author(s):  
Mengmeng Jiang ◽  
Haide Chen ◽  
Guoji Guo

<b><i>Background:</i></b> The kidney is a highly complex organ that performs diverse functions that are essential for health. Kidney disease occurs when the kidneys are damaged and fail to function properly. Single-cell analysis is a powerful technology that provides unprecedented insights into normal and abnormal kidney cell types and will transform our understanding of the mechanism underlying common kidney diseases. <b><i>Summary:</i></b> Our understanding of kidney disease pathogenesis is limited by the incomplete molecular characterization of cell types responsible for kidney functions. Application of single-cell technologies for the study of the kidney has revealed cellular heterogeneity, gene expression signatures, and molecular dynamics during the onset and development of kidney diseases. Single-cell analyses of kidney organoids and allograft tissues offer new insights into kidney organogenesis, disease mechanisms, and therapeutic outcomes. Collectively, a better understanding of kidney cell heterogeneity and the molecular dynamics of kidney diseases will improve diagnostic accuracy and facilitate the identification of novel treatment strategies in nephrology. <b><i>Key Message:</i></b> In this review article, we summarize recent single-cell studies on kidney diseases and discuss the impact of single-cell technology on both basic and clinical nephrology research.


2021 ◽  
Author(s):  
Pelin Gundogdu ◽  
Carlos Loucera ◽  
Inmaculada Alamo-Alvarez ◽  
Joaquin Dopazo ◽  
Isabel Nepomuceno

Abstract BackgroundSingle-cell RNA sequencing (scRNA-seq) data provides valuable insights into cellular heterogeneity which is significantly improving the current knowledge on biology and human disease. One of the main applications of scRNA-seq data analysis is the identification of new cell types and cell states. Deep neural networks (DNNs) are among the best methods to address this problem. However, this performance comes with the trade-off for a lack of interpretability in the results. In this work we propose an intelligible pathway-driven neural network to correctly solve cell-type related problems at single-cell resolution while providing a biologically meaningful representation of the data.ResultsIn this study, we explored the deep neural networks constrained by several types of prior biological information, e.g. signaling pathway information, as a way to reduce the dimensionality of the scRNA-seq data. We have tested the proposed biologically-based architectures on thousands of cells of human and mouse origin across a collection of public datasets in order to check the performance of the model. Specifically, we tested the architecture across different validation scenarios that try to mimic how unknown cell types are clustered by the DNN and how it correctly annotates cell types by querying a database in a retrieval problem. Moreover, our approach demonstrated to be comparable to other less interpretable DNN approaches constrained by using protein-protein interactions gene regulation data. Finally, we show how the latent structure learned by the network could be used to visualize and to interpret the composition of human single cell datasets.ConclusionsHere we demonstrate how the integration of pathways, which convey fundamental information on functional relationships between genes, with DNNs, that provide an excellent classification framework, results in an excellent alternative to learn a biologically meaningful representation of scRNA-seq data. In addition, the introduction of prior biological knowledge in the DNN reduces the size of the network architecture. Comparative results demonstrate a superior performance of this approach with respect to other similar approaches. As an additional advantage, the use of pathways within the DNN structure enables easy interpretability of the results by connecting features to cell functionalities by means of the pathway nodes, as demonstrated with an example with human melanoma tumor cells.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Pelin Gundogdu ◽  
Carlos Loucera ◽  
Inmaculada Alamo-Alvarez ◽  
Joaquin Dopazo ◽  
Isabel Nepomuceno

Abstract Background Single-cell RNA sequencing (scRNA-seq) data provide valuable insights into cellular heterogeneity which is significantly improving the current knowledge on biology and human disease. One of the main applications of scRNA-seq data analysis is the identification of new cell types and cell states. Deep neural networks (DNNs) are among the best methods to address this problem. However, this performance comes with the trade-off for a lack of interpretability in the results. In this work we propose an intelligible pathway-driven neural network to correctly solve cell-type related problems at single-cell resolution while providing a biologically meaningful representation of the data. Results In this study, we explored the deep neural networks constrained by several types of prior biological information, e.g. signaling pathway information, as a way to reduce the dimensionality of the scRNA-seq data. We have tested the proposed biologically-based architectures on thousands of cells of human and mouse origin across a collection of public datasets in order to check the performance of the model. Specifically, we tested the architecture across different validation scenarios that try to mimic how unknown cell types are clustered by the DNN and how it correctly annotates cell types by querying a database in a retrieval problem. Moreover, our approach demonstrated to be comparable to other less interpretable DNN approaches constrained by using protein-protein interactions gene regulation data. Finally, we show how the latent structure learned by the network could be used to visualize and to interpret the composition of human single cell datasets. Conclusions Here we demonstrate how the integration of pathways, which convey fundamental information on functional relationships between genes, with DNNs, that provide an excellent classification framework, results in an excellent alternative to learn a biologically meaningful representation of scRNA-seq data. In addition, the introduction of prior biological knowledge in the DNN reduces the size of the network architecture. Comparative results demonstrate a superior performance of this approach with respect to other similar approaches. As an additional advantage, the use of pathways within the DNN structure enables easy interpretability of the results by connecting features to cell functionalities by means of the pathway nodes, as demonstrated with an example with human melanoma tumor cells.


2019 ◽  
Author(s):  
Erwin M. Schoof ◽  
Nicolas Rapin ◽  
Simonas Savickas ◽  
Coline Gentil ◽  
Eric Lechman ◽  
...  

AbstractIn recent years, cellular life science research has experienced a significant shift, moving away from conducting bulk cell interrogation towards single-cell analysis. It is only through single cell analysis that a complete understanding of cellular heterogeneity, and the interplay between various cell types that are fundamental to specific biological phenotypes, can be achieved. Single-cell assays at the protein level have been predominantly limited to targeted, antibody-based methods. However, here we present an experimental and computational pipeline, which establishes a comprehensive single-cell mass spectrometry-based proteomics workflow.By exploiting a leukemia culture system, containing functionally-defined leukemic stem cells, progenitors and terminally differentiated blasts, we demonstrate that our workflow is able to explore the cellular heterogeneity within this aberrant developmental hierarchy. We show our approach is capable to quantifying hundreds of proteins across hundreds of single cells using limited instrument time. Furthermore, we developed a computational pipeline (SCeptre), that effectively clusters the data and permits the extraction of cell-specific proteins and functional pathways. This proof-of-concept work lays the foundation for future global single-cell proteomics studies.


Sign in / Sign up

Export Citation Format

Share Document