scholarly journals Novel kind of decagonal ordering in Al74Cr15Fe11

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haikun Ma ◽  
Zhanbing He ◽  
Hua Li ◽  
Tiantian Zhang ◽  
Shuang Zhang ◽  
...  

AbstractA high-angle annular dark field scanning transmission electron microscopy study of the intermetallic compound Al74Cr15Fe11 reveals a quasiperiodic structure significantly differing from the ones known so far. In contrast to the common quasi-unit-cells based on Gummelt decagons, the present structure is related to a covering formed by Lück decagons, which can also be described by a Hexagon-Bow-Tie tiling.

2020 ◽  
Author(s):  
Haikun Ma ◽  
Zhanbing He ◽  
Hua Li ◽  
Tiantian Zhang ◽  
Shuang Zhang ◽  
...  

Abstract A high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) study of the intermetallic compound Al74Cr15Fe11 reveals a novel kind of aperiodic order. In contrast to the common quasi-unit-cells based on Gummelt decagons, the present structure is related to a covering formed by Andritz decagons, which can also be described by a Hexagon-Bowtie (HB) tiling. This is the first observation of a decagonal quasicrystal with a structure significantly differing from the ones known so far.


2010 ◽  
Vol 44 (1) ◽  
pp. 111-121 ◽  
Author(s):  
K. Z. Baba-Kishi

Electron diffraction patterns recorded using a scanning transmission electron microscope (STEM) from PbMg1/3Nb2/3O3(PMN) crystallites and PbZn1/3Nb2/3O3(PZN) crystals show weak and systematic continuous diffuse streaking along the 〈110〉 directions. Detailed high-angle annular dark-field (HAADF) images recordedviaan aberration-corrected STEM show that theB-site cations in PMN and PZN undergo correlated and long-range displacements towards the Pb2+ions on the (110) planes. The planarB-site displacement measured from the centres of the octahedra is about 0.3–0.5 Å in PMN and about 0.20–0.4 Å in PZN. In the HAADF images of the PMN crystallites and PZN crystals studied, there is insufficient evidence for systematic long-range planar displacements of the Pb2+ions. The observed Pb2+ion displacements in PMN and PZN appear randomly distributed, mostly displaced along 〈110〉 towards theB-site columns. There is also evidence of possible stress-related distortion in certain unit cells of PMN. In the relaxors studied, two distinct types of displacements were observed: one is the long-range planarB-site spatial displacement on the (110) planes, correlated with the Pb2+ions, possibly resulting in the observed diffuse streaking; the other is short-range Pb2+ion displacement on the (110) planes. The observed displacement status indicates a mutual attraction between the Pb ions and theB-site cations in which theBsites undergo the largest spatial displacements towards the Pb ions along 〈110〉.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


2009 ◽  
Vol 24 (8) ◽  
pp. 2596-2604 ◽  
Author(s):  
Sašo Šturm ◽  
Makoto Shiojiri ◽  
Miran Čeh

The microstructure in AO-excess SrTiO3 (A = Sr2+, Ca2+, Ba2+) ceramics is strongly affected by the formation of Ruddlesden-Popper fault–rich (RP fault) lamellae, which are coherently intergrown with the matrix of the perovskite grains. We studied the structure and chemistry of RP faults by applying quantitative high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy analyses. We showed that the Sr2+ and Ca2+ dopant ions form RP faults during the initial stage of sintering. The final microstructure showed preferentially grown RP fault lamellae embedded in the central part of the anisotropic perovskite grains. In contrast, the dopant Ba2+ ions preferably substituted for Sr2+ in the SrTiO3 matrix by forming a BaxSr1−xTiO3 solid solution. The surplus of Sr2+ ions was compensated structurally in the later stages of sintering by the formation of SrO-rich RP faults. The resulting microstructure showed RP fault lamellae located at the surface of equiaxed BaxSr1-xTiO3 perovskite grains.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
N. Baladés ◽  
D. L. Sales ◽  
M. Herrera ◽  
A. M. Raya ◽  
J. C. Hernández-Garrido ◽  
...  

This paper explores the capability of scanning transmission electron microscopy (STEM) techniques in determining the dispersion degree of graphene layers within the carbon matrix by using simulated high-angle annular dark-field (HAADF) images. Results ensure that unmarked graphene layers are only detectable if their orientation is parallel to the microscope beam. Additionally, gold-marked graphene layers allow evaluating the dispersion degree in structural composites. Moreover, electron tomography has been demonstrated to provide truthfully 3D distribution of the graphene sheets inside the matrix when an appropriate reconstruction algorithm and 2D projections including channelling effect are used.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4531
Author(s):  
Maria Meledina ◽  
Geert Watson ◽  
Alexander Meledin ◽  
Pascal Van Der Voort ◽  
Joachim Mayer ◽  
...  

Ru catalyst nanoparticles were encapsulated into the pores of a Cr-based metal-organic framework (MOF)—MIL-101. The obtained material, as well as the non-loaded MIL-101, were investigated down to the atomic scale by annular dark-field scanning transmission electron microscopy using low dose conditions and fast image acquisition. The results directly show that the used wet chemistry loading approach is well-fitted for the accurate embedding of the individual catalyst nanoparticles into the cages of the MIL-101. The MIL-101 host material remains crystalline after the loading procedure, and the encapsulated Ru nanoparticles have a metallic nature. Annular dark field scanning transmission electron microscopy, combined with EDX mapping, is a perfect tool to directly characterize both the embedded nanoparticles and the loaded nanoscale MOFs. The resulting nanostructure of the material is promising because the Ru nanoparticles hosted in the MIL-101 pores are prevented from agglomeration—the stability and lifetime of the catalyst could be improved.


Sign in / Sign up

Export Citation Format

Share Document