scholarly journals Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandre Jaoui ◽  
Benoît Fauqué ◽  
Kamran Behnia

AbstractDetecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic field of investigation in contemporary condensed matter physics. Most attention has been focused on the regime near the degeneracy temperature when the thermal velocity can present a spatially modulated profile. Here, we report on the observation of a hydrodynamic feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the temperature dependence of thermal and electric resistivities, we detect a size-dependent departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of transport. This observation finds a natural explanation in the hydrodynamic picture, where upon warming, momentum-conserving collisions reduce quadratically in temperature both viscosity and thermal diffusivity. This effect has been established theoretically and experimentally in normal-state liquid 3He. The comparison of electrons in antimony and fermions in 3He paves the way to a quantification of momentum-conserving fermion-fermion collision rate in different Fermi liquids.

2013 ◽  
Vol 210 (10) ◽  
pp. 2022-2027 ◽  
Author(s):  
P. Ščajev ◽  
S. Nargelas ◽  
K. Jarašiūnas ◽  
I. Kisialiou ◽  
E. Ivakin ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Johnson O Oyebode ◽  
Vivian N Mbagwu ◽  
Modupe A Onitiri ◽  
Olayinka O Adewumi

Thermal properties of materials such as plastic matrix composite is one of the important parameters for determining their behaviour and relevant applications. This present work focuses on determining the thermal behaviour of epoxy and polypropylene (PP) matrix composite reinforced with iron ore tailings (IOT) particulates of sizes 150 µm, 212 µm and 300 µm at various loadings of 5%, 10%, 15%, 20%, 25%, and 30%. The thermal behaviour of the developed composites was investigated experimentally using a KD2 pro thermal analyser. The results obtained from the experiment showed that increasing filler loading in epoxy leads to increased specific heat capacity and thermal resistivity. The maximum values recorded for the thermal resistivity and specific heat capacity were 0. 592°C.m/W and 2.352 J/kgK respectively. Thermal conductivity and thermal diffusivity of values 0.168W/mK and 0.089 mm²/s respectively were the lowest obtained for the epoxy matrix composite. It was also observed that addition of IOT in PP had significant effect on the thermal properties of the PP composite. Thermal conductivity and thermal diffusivity were found to increase with increased particle loading compared to the pure PP sample; the highest value being 2.235 W/mK and 5.51 mm²/s for thermal conductivity and thermal diffusivity respectively while low values of 0.05 Cm/W and 0.371 J/kgK was recorded for thermal resistivity and specific heat capacity. The presence of iron ore tailings reduces the thermal conductivity and diffusivity in epoxy but increases the conductivity and diffusivity in polypropylene. Keywords— Composite, Epoxy, IOT, Polypropylene, Composite, Thermal Conductivity


2014 ◽  
Vol 44 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Anju. K. Augustine ◽  
S. Mathew ◽  
C. P. Girijavallabhan ◽  
P. Radhakrishnan ◽  
V. P. N Nampoori ◽  
...  

Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Sign in / Sign up

Export Citation Format

Share Document