scholarly journals Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kamran Rizzolo ◽  
Angela Yeou Hsiung Yu ◽  
Adedeji Ologbenla ◽  
Sa-Rang Kim ◽  
Haojie Zhu ◽  
...  

AbstractA functional association is uncovered between the ribosome-associated trigger factor (TF) chaperone and the ClpXP degradation complex. Bioinformatic analyses demonstrate conservation of the close proximity of tig, the gene coding for TF, and genes coding for ClpXP, suggesting a functional interaction. The effect of TF on ClpXP-dependent degradation varies based on the nature of substrate. While degradation of some substrates are slowed down or are unaffected by TF, surprisingly, TF increases the degradation rate of a third class of substrates. These include λ phage replication protein λO, master regulator of stationary phase RpoS, and SsrA-tagged proteins. Globally, TF acts to enhance the degradation of about 2% of newly synthesized proteins. TF is found to interact through multiple sites with ClpX in a highly dynamic fashion to promote protein degradation. This chaperone–protease cooperation constitutes a unique and likely ancestral aspect of cellular protein homeostasis in which TF acts as an adaptor for ClpXP.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Peter Tsvetkov ◽  
Marc L Mendillo ◽  
Jinghui Zhao ◽  
Jan E Carette ◽  
Parker H Merrill ◽  
...  

Proteasomes are central regulators of protein homeostasis in eukaryotes. Proteasome function is vulnerable to environmental insults, cellular protein imbalance and targeted pharmaceuticals. Yet, mechanisms that cells deploy to counteract inhibition of this central regulator are little understood. To find such mechanisms, we reduced flux through the proteasome to the point of toxicity with specific inhibitors and performed genome-wide screens for mutations that allowed cells to survive. Counter to expectation, reducing expression of individual subunits of the proteasome's 19S regulatory complex increased survival. Strong 19S reduction was cytotoxic but modest reduction protected cells from inhibitors. Protection was accompanied by an increased ratio of 20S to 26S proteasomes, preservation of protein degradation capacity and reduced proteotoxic stress. While compromise of 19S function can have a fitness cost under basal conditions, it provided a powerful survival advantage when proteasome function was impaired. This means of rebalancing proteostasis is conserved from yeast to humans.


2021 ◽  
Author(s):  
Bahareh Mahrou ◽  
Azady Pirhanov ◽  
Moluk Hadi Alijanvand ◽  
Yong Ku Cho ◽  
Yong-Jun Shin

Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable control of physiological outcomes in biotechnology applications. Previous studies have shown that controlling RNA transcription achieves perturbations in protein levels over a timescale of several hours. Here, we demonstrate the potential for harnessing the protein degradation machinery to achieve robust, rapid control of a specific protein level in the yeast Saccharomyces cerevisiae. Using a light-driven protein degradation machinery and red fluorescent proteins as reporters, we show that under constant transcriptional induction, repeated triangular fluctuations in protein levels can be generated by controlling the protein degradation rate. Consistent with previous results using transcriptional control, we observed a continuous decrease in the magnitude of fluctuations as the modulation frequency increased, indicating low-pass filtering of input perturbation. However, compared to hour-scale fluctuations observed using transcriptional control, modulating the protein degradation rate enabled five to ten minute-scale fluctuations. Our study demonstrates the potential for repeated control of protein levels by controlling protein degradation rate, at timescales much shorter than that achieved by transcriptional control.


1983 ◽  
Vol 57 (5) ◽  
pp. 1276-1285 ◽  
Author(s):  
Rick Stock ◽  
Terry Klopfenstein ◽  
Dennis Brink ◽  
Steve Lowry ◽  
Dave Rock ◽  
...  

2021 ◽  
Author(s):  
Mahlon Collins ◽  
Randi R. Avery ◽  
Frank W Albert

The bulk of targeted cellular protein degradation is performed by the proteasome, a multi-subunit complex consisting of the 19S regulatory particle, which binds, unfolds, and translocates substrate proteins, and the 20S core particle, which degrades them. Protein homeostasis requires precise, dynamic control of proteasome activity. To what extent genetic variation creates differences in proteasome activity is almost entirely unknown. Using the ubiquitin-independent degrons of the ornithine decarboxylase and Rpn4 proteins, we developed reporters that provide high-throughput, quantitative measurements of proteasome activity in vivo in genetically diverse cell populations. We used these reporters to characterize the genetic basis of variation in proteasome activity in the yeast Saccharomyces cerevisiae. We found that proteasome activity is a complex, polygenic trait, shaped by variation throughout the genome. Genetic influences on proteasome activity were predominantly substrate-specific, suggesting that they primarily affect the function or activity of the 19S regulatory particle. Our results demonstrate that individual genetic differences create heritable variation in proteasome activity and suggest that genetic effects on proteasomal protein degradation may be an important source of variation in cellular and organismal traits.


1992 ◽  
Vol 286 (1) ◽  
pp. 187-191 ◽  
Author(s):  
P Soumillion ◽  
J Fastrez

The R gene coding for phage lambda lysozyme (lambda L), cloned under the control of the PL promoter on a multicopy vector, is expressed in an Escherichia coli strain auxotrophic for tryptophan. Induction by a thermal shift after tryptophan supplementation in a culture initially brought into stationary phase by tryptophan starvation leads to highly increased expression. A thermally unstable mutant protein, difficult to obtain under standard conditions, can be easily produced by post-stationary-phase expression. It is shown that this is due to a drastic decrease in the heat-shock-induced proteolysis normally observed on thermal induction. These data are discussed in relation to our present knowledge of stringent and heat-shock responses.


2017 ◽  
Vol 216 (8) ◽  
pp. 2295-2304 ◽  
Author(s):  
Norfadilah Hamdan ◽  
Paraskevi Kritsiligkou ◽  
Chris M. Grant

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


1980 ◽  
Vol 192 (1) ◽  
pp. 311-320 ◽  
Author(s):  
C J Wilde ◽  
N Paskin ◽  
J Saxton ◽  
R J Mayer

1. In mammary gland explants subjected to experimental manipulation, average rates (during 24 h periods) of degradation of fatty acid synthase, casein and cytosol-fraction proteins were measured by a double-isotope method. Rates of degradation of fatty acid synthase were also computed from measurements of changing enzyme amount and rate of synthesis. 2. During the period of most rapid enzyme accumulation there is a transient decrease in the computed rate of degradation of fatty acid synthase. Removal of hormones produces a rapid increase in the computed rate of degradation of the enzyme. 3. The average rate of degradation of fatty acid synthase measured by the double-isotope method is low in the presence of hormones, and increases on hormone removal. This increase in degradation rate is inhibited by adrenaline and further blocked by insulin. NH4Cl (10 mM) also partially inhibits the increase in protein degradation on hormone removal. 4. The pattern of changes in the average rate of degradation of cytosol-fraction proteins is similar to that for fatty acid synthase alone. There is no relationship between subunit molecular weight and rate of degradation under all experimental conditions. 5. Isotope ratios for resolved cytosol protein mixtures are transformed logarithmically to make the standard deviations an estimate of heterogeneity of degradation rates. By this analysis, in some conditions there appears to be significant measureable heterogeneity of degradation rates. 6. Little degradation of casein is measured in the presence of hormones, but a marked increase in the rate of degradation can be measured when hormones are removed. Whereas at 24-48h NH4Cl (10 mM) has little effect on this enhanced rate of degradation, at 48-72h it causes a large decrease in degradation rate. 7. Results are discussed in terms of a two-component degradation system in mammary gland explants.


Sign in / Sign up

Export Citation Format

Share Document