scholarly journals Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
René Schneider ◽  
Kris van’t Klooster ◽  
Kelsey L. Picard ◽  
Jasper van der Gucht ◽  
Taku Demura ◽  
...  

AbstractPlants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning.

Author(s):  
René Schneider ◽  
Kris van ’t Klooster ◽  
Kelsey Picard ◽  
Jasper van der Gucht ◽  
Taku Demura ◽  
...  

ABSTRACTPlants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. We established long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to investigate the microtubule re-organization. The initial disperse microtubule array rapidly readjusted into well-defined microtubule bands, which required local de-stabilization of individual microtubules in band-interspersing gap regions. Using extensive microtubule simulations, we could recapitulate the process in silico and found that local recruitment of microtubule-bound nucleation is critical for pattern formation, which we confirmed in vivo. Our simulations further indicated that the initial microtubule alignment impact microtubule band patterning. We confirmed this prediction using katanin mutants, which have microtubule organization defects, and uncovered active KATANIN recruitment to the forming microtubule bands. Our combination of quantitative microscopy and modelling outlines a framework towards a comprehensive understanding of microtubule re-organization during wall pattern formation.


2020 ◽  
Vol 32 (39) ◽  
pp. 2070291 ◽  
Author(s):  
Marcelina Cardoso Dos Santos ◽  
Ingrid Colin ◽  
Gabriel Ribeiro Dos Santos ◽  
Kimihiro Susumu ◽  
Michaël Demarque ◽  
...  

2015 ◽  
Vol 44 (12) ◽  
pp. 5763-5770 ◽  
Author(s):  
Shyamaprosad Goswami ◽  
Krishnendu Aich ◽  
Sangita Das ◽  
Chitrangada Das Mukhopadhyay ◽  
Deblina Sarkar ◽  
...  

A new quinoline based sensor was developed and applied for the selective detection of Cd2+ both in vitro and in vivo.


2020 ◽  
Vol 343 ◽  
pp. 108808 ◽  
Author(s):  
Margarita Arango-Lievano ◽  
Yann Dromard ◽  
Pierre Fontanaud ◽  
Chrystel Lafont ◽  
Patrice Mollard ◽  
...  

2019 ◽  
Vol 55 (33) ◽  
pp. 4841-4844 ◽  
Author(s):  
Guilin Chen ◽  
Zaicai Zhou ◽  
Hui Feng ◽  
Chenyan Zhang ◽  
Yifan Wang ◽  
...  

A molecular probe with aggregation-induced phosphorescence (AIP) properties for calcium ion-specific detection and imaging in vivo was designed.


Sign in / Sign up

Export Citation Format

Share Document