scholarly journals Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adam N. Goldfarb ◽  
Katie C. Freeman ◽  
Ranjit K. Sahu ◽  
Kamaleldin E. Elagib ◽  
Maja Holy ◽  
...  

AbstractAnemias of chronic disease and inflammation (ACDI) result from restricted iron delivery to erythroid progenitors. The current studies reveal an organellar response in erythroid iron restriction consisting of disassembly of the microtubule cytoskeleton and associated Golgi disruption. Isocitrate supplementation, known to abrogate the erythroid iron restriction response, induces reassembly of microtubules and Golgi in iron deprived progenitors. Ferritin, based on proteomic profiles, regulation by iron and isocitrate, and putative interaction with microtubules, is assessed as a candidate mediator. Knockdown of ferritin heavy chain (FTH1) in iron replete progenitors induces microtubule collapse and erythropoietic blockade; conversely, enforced ferritin expression rescues erythroid differentiation under conditions of iron restriction. Fumarate, a known ferritin inducer, synergizes with isocitrate in reversing molecular and cellular defects of iron restriction and in oral remediation of murine anemia. These findings identify a cytoskeletal component of erythroid iron restriction and demonstrate potential for its therapeutic targeting in ACDI.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 159-159
Author(s):  
Chante Richardson ◽  
Grant C. Bullock ◽  
Lorrie L Delehanty ◽  
Anne-Laure Talbot ◽  
Kamaleldin E Elagib ◽  
...  

Abstract Abstract 159 The anemias of chronic disease (ACD) are a common complication of malignancy, inflammation and kidney disorders. In ACD, there is dysregulation of iron homeostasis, decreased proliferation of erythroid progenitors, diminished production of erythropoietin (EPO), and shortened lifespan of RBC. Multiple pathophysiologic mechanisms have been implicated in the development of ACD, including elevated production of hepcidin and inflammatory cytokines, IFNγ, TRAIL, Interleukins-1β, 6, 10, 15, & TNFα. These cytokines are thought to directly inhibit erythroid differentiation through unknown mechanisms. The current study addressed the hypothesis that inhibition of erythropoiesis in ACD may arise through synergistic effects of iron deprivation and specific inflammatory cytokines. To identify relevant cytokines, candidate factors were applied to primary human erythroid progenitors in iron replete and restricted cultures. Peripheral blood human CD34+ progenitors from healthy donors underwent standard prestimulation for 72 hours, followed by culture in unilineage erythroid medium (4.5 U/ml EPO + 25ng/ml SCF) for 4-5 days under iron replete (100% transferrin saturation) or iron restricted (15% transferrin saturation) conditions. Candidate cytokines were screened for effects on viability, proliferation, and differentiation using cell counting and flow cytometric analysis of the erythroid cell surface marker GPA and the megakaryocytic antigen CD41a. Contrary to previous reports, the majority of cytokines (TRAIL & Interleukins-1β, 6, 10, 15) showed no effects on erythroid proliferation or differentiation under iron replete or restricted conditions. By contrast, both IFNγ and TNFα displayed potent inhibitory effects under iron restricted conditions but only weak effects in iron replete cultures. Typically, iron restriction alone reduced the proportion of GPA+ cells by 50%, whereas IFNγ or TNFα combined with iron restriction caused a 90% reduction. While both cytokines cooperated with iron restriction in blocking upregulation of GPA and promoting cell death, each cytokine also had distinctive effects on morphology and differentiation. IFNγ enhanced megakaryocytic development, while TNFα retained cells as immature, CD34+ progenitors. The synergistic inhibition of erythroid differentiation with iron restriction and TNFα was confirmed in vivo using a murine model of dietary iron deprivation coupled with continuous infusion of low-dose TNFα. Regarding the mechanism for this synergy, we have previously shown that erythroid iron deprivation leads to inactivation of the aconitase enzymes, which normally convert citrate to isocitrate, and that provision of exogenous isocitrate abrogates the erythroid inhibition associated with iron deprivation. Accordingly, participation of this pathway was assessed in the more potent erythroid inhibition associated with IFNγ or TNFα plus iron deprivation. Strikingly, isocitrate administration not only abrogated effects due to iron deprivation but also those due to the inflammatory cytokines, leading to complete rescue of erythroid differentiation. To address the underlying basis for erythroid cross-talk of iron and cytokine signaling, we screened pathways implicated in iron metabolism and inflammation. Two relevant pathways identified were Jun kinase (JNK) and calmodulin-associated kinase II (CAMKII), important in TNFα and IFNγ signaling, respectively. In particular, TNFα and iron deprivation synergized in the activation of JNK, and IFNγ and iron deprivation synergized in activating CAMKII. In both cases, isocitrate partially restored the activation to basal levels. As an important negative control, iron deprivation did not affect IFNγ activation of STAT1 phosphorylation, indicating that its effects were not due to upregulation of receptor expression or function. Altogether, these data suggest that among the various cytokines implicated in ACD, only IFNγ and TNFα synergize with iron deprivation in the inhibition of erythropoiesis. These actions occur through cross-talk between intracellular signaling pathways, specifically pathways involving aconitase and cytokine-activated kinases. The connection of aconitase/metabolism with inflammation is novel and has implications for clinical treatment of ACD, as well as for new understanding of erythroid and inflammatory signaling. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi257-vi257
Author(s):  
Bhavyata Pandya ◽  
Vagisha Ravi ◽  
James Connor

Abstract Increased expression of Ferritin heavy chain (FHC) protein has been associated with poor prognosis in Glioblastoma Multiforme (GBM) which is one of the most aggressive and common types of brain cancer. GBM patients have also been found to have increased extracellular ferritin levels, in their serum and cerebrospinal fluid (CSF), which are lowered once the source/tumor has been resected. Extracellular FHC can function as an iron delivery protein, and increasing amount of iron has been known to contribute to tumor initiation and proliferation. To study the effect of extracellular FHC in GBM cells we used patient derived GBM, CD133+ cancer stem cells (GSCs) from the pro-neural (T3691) and mesenchymal (T387) subtypes. Using recombinant FHC, conjugated with quantum dots (QD), we observed significant increase in cellular viability and intracellular uptake of FHC by the GSCs in a dose dependent manner. Our lab has previously shown that extracellular FHC interacts with T-Cell Immunoglobulin Mucin Receptor 1 (Tim-1) in the human oligodendrocytes. In order to determine if GSCs express the Tim-1 receptor we first confirmed its expression on GSCs using immunoblotting and immunocytochemistry. To test if FHC interacts with Tim-1, we performed knockdown of Tim-1 using siRNAs. However, the siRNA was not able to downregulate the Tim-1 receptors. Next, we exposed the GSCs to Sema4A, which has been shown in our previous studies to interact with Tim-1 receptor on human oligodendrocytes and is toxic to oligodendrocytes. The GSCs however were not affected by the saturable concentration of Sema4A. Thus, through this study we have shown the expression of potential FHC receptors on GSCs and a robust effect of H-ferritin on GSCs proliferation. Further experiments are warranted in this direction to understand this extracellular FHC uptake pathway and its role in GBM cell proliferation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 417-417
Author(s):  
Grant C. Bullock ◽  
Lorrie L Delehanty ◽  
Anne-Laure Talbot ◽  
Chante Richardson ◽  
Kamaleldin E Elagib ◽  
...  

Abstract Erythropoietin (Epo) signaling drives normal erythropoiesis by promoting the survival, proliferation and maturation of committed erythroid progenitor cells. Epo acts at an early stage in erythroid development, prior to the initiation of hemoglobin synthesis. Under conditions of iron restriction, erythroid progenitors become refractory to Epo, resulting in hypoplastic anemia. The resulting iron restriction checkpoint protects iron stores from depletion by preventing Epo-driven erythroid expansion and inappropriate iron utilization for hemoglobin synthesis. In addition to diminished body stores, defects in iron uptake or intracellular trafficking can also activate this checkpoint and contribute to Epo-refractory anemias, e.g. sideroblastic anemias. Our previous work using primary human hematopoietic cultures had implicated aconitase enzymes, which interconvert citrate and isocitrate, as critical regulators of the erythroid iron-restriction checkpoint. In those studies, supplying cells with isocitrate had completely abrogated the block in erythroid development caused by iron restriction. In the current studies, we examine the mechanism for isocitrate rescue of erythropoiesis in iron deprived human progenitors and determine the in vivo effects of isocitrate administration in mice with iron deficiency anemia. Initial experiments addressed whether the activity of isocitrate was due to its catabolism to yield ATP and succinyl CoA, a precursor of heme. Several independent findings argued against such a metabolic mechanism. Firstly, erythroid progenitors showed no changes in cellular [ATP] with iron deprivation −/+ isocitrate. Secondly, a bioactive analog of alpha-ketoglutarate, TaKG, failed to rescue erythropoiesis under iron deprivation. Thirdly, isocitrate promoted erythroid differentiation in progenitors with blockade in mitochondrial biogenesis, induced by chloramphenicol. In these last studies, isocitrate reversed chloramphenicol inhibition of glycophorin A and globin expression; exogenous hemin by contrast reversed only the inhibition of globin expression. The combination of isocitrate and hemin, however, showed strong synergy in the rescue of growth and globin expression in cholaramphenicol treated progenitors. Subsequent experiments tested the hypothesis that isocitrate functions as a second messenger in erythroid development. Accordingly, iron deprived erythroid progenitors exposed to a range of Epo levels (0.05–20 U/ml) underwent isocitrate treatment. Remarkably, isocitrate showed no rescue of iron deprived erythroid cultures with 0.05 U/ml Epo, a dose that still promotes erythroid differentiation in high iron cultures. Partial rescue was obtained with 0.2 U/ml Epo, and complete rescue with > 4.5 U/ml. Previous studies have suggested that Epo-mediated calcium signaling shows a strong dosage dependency, requiring relatively high doses of Epo to activate calcium influx. In human CD34+ progenitors exposed to 4.5 U/ml Epo for either 5 hours or 3 days, iron deprivation induced a drop in steady state intracellular calcium levels. Inclusion of isocitrate in the medium restored the intracellular calcium to the levels seen in the iron-replete cultures. Finally, the in vivo activity of isocitrate was assessed in a murine model of iron deficiency anemia. Strikingly, intraperitoneal injections of isocitrate (200 mg/kg/day for 5 days) significantly augmented the red cell counts in C57BL/6 weanlings subjected to a low iron diet: mean RBC of 9.3 ± 0.35 × 10e12 cells/liter for the isocitrate group compared to an average RBC of 7.4 ± 0.51 × 10e12 cells/liter for the saline control group (P=0.012, N = 6 for each group). Interestingly, this increase accompanied a parallel decrease in red cell mean corpuscular hemoglobin concentration. Taken together, our results suggest a role for isocitrate as a second messenger coupled to Epo signaling and potentially involved in intracellular calcium regulation. In vivo administration abrogates the iron restriction checkpoint on red cell production, as in ex vivo studies, but cannot drive hemoglobin synthesis in the face of limited iron stores. The ability of isocitrate to collaborate with hemin in overriding erythroid mitochondrial defects offers novel therapeutic avenues for sideroblastic anemias.


Blood ◽  
2010 ◽  
Vol 116 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Grant C. Bullock ◽  
Lorrie L. Delehanty ◽  
Anne-Laure Talbot ◽  
Sara L. Gonias ◽  
Wing-Hang Tong ◽  
...  

AbstractHuman red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis. Experiments in this system identified as a critical regulatory element the aconitases, multifunctional iron-sulfur cluster proteins that metabolize citrate to isocitrate. Iron restriction suppressed mitochondrial and cytosolic aconitase activity in erythroid but not granulocytic or megakaryocytic progenitors. An active site aconitase inhibitor, fluorocitrate, blocked erythroid differentiation in a manner similar to iron deprivation. Exogenous isocitrate abrogated the erythroid iron restriction response in vitro and reversed anemia progression in iron-deprived mice. The mechanism for aconitase regulation of erythropoiesis most probably involves both production of metabolic intermediates and modulation of erythropoietin signaling. One relevant signaling pathway appeared to involve protein kinase Cα/β, or possibly protein kinase Cδ, whose activities were regulated by iron, isocitrate, and erythropoietin.


Author(s):  
Harpreet Kaur ◽  
William S. Bush ◽  
Scott L. Letendre ◽  
Ronald J. Ellis ◽  
Robert K. Heaton ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (3) ◽  
pp. 428-436 ◽  
Author(s):  
Gurpreet K. Lakhanpal ◽  
Laura M. Vecchiarelli-Federico ◽  
You-Jun Li ◽  
Jiu-Wei Cui ◽  
Monica L. Bailey ◽  
...  

Abstract The activation of Fli-1, an Ets transcription factor, is the critical genetic event in Friend murine leukemia virus (F-MuLV)–induced erythroleukemia. Fli-1 overexpression leads to erythropoietin-dependent erythroblast proliferation, enhanced survival, and inhibition of terminal differentiation, through activation of the Ras pathway. However, the mechanism by which Fli-1 activates this signal transduction pathway has yet to be identified. Down-regulation of the Src homology 2 (SH2) domain-containing inositol-5-phosphatase-1 (SHIP-1) is associated with erythropoietin-stimulated erythroleukemic cells and correlates with increased proliferation of transformed cells. In this study, we have shown that F-MuLV–infected SHIP-1 knockout mice display accelerated erythroleukemia progression. In addition, RNA interference (RNAi)-mediated suppression of SHIP-1 in erythroleukemia cells activates the phosphatidylinositol 3-kinase (PI 3-K) and extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathways, blocks erythroid differentiation, accelerates erythropoietin-induced proliferation, and leads to PI 3-K–dependent Fli-1 up-regulation. Chromatin immunoprecipitation and luciferase assays confirmed that Fli-1 binds directly to an Ets DNA binding site within the SHIP-1 promoter and suppresses SHIP-1 transcription. These data provide evidence to suggest that SHIP-1 is a direct Fli-1 target, SHIP-1 and Fli-1 regulate each other in a negative feedback loop, and the suppression of SHIP-1 by Fli-1 plays an important role in the transformation of erythroid progenitors by F-MuLV.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
T Yokochi ◽  
M Brice ◽  
PS Rabinovitch ◽  
T Papayannopoulou ◽  
G Stamatoyannopoulos

Two new cell surface antigens specific for the erythroid lineage were defined with cytotoxic IgM monoclonal antibodies (McAb) (EP-1; EP-2) that were produced using BFU-E-derived colonies as immunogens. These two antigens are expressed on in vivo and in vitro derived adult and fetal erythroblasts, but not on erythrocytes. They are not detectable on resting lymphocytes, concanavalin-A (Con-A) activated lymphoblasts, granulocytes, and monocytes or granulocytic cells or macrophages present in peripheral blood or harvested from CFU-GM cultures. Cell line and tissue distributions distinguish McAb EP-1 and EP-2 from all previously described monoclonal antibodies. McAb EP-1 (for erythropoietic antigen-1) inhibits the formation of BFU-E and CFU-E, but not CFU-GM, colonies in complement-dependent cytotoxicity assays. By cell sorting analysis, about 90% of erythroid progenitors (CFU-E, BFU-E) were recovered in the antigen-positive fraction. Seven percent of the cells in this fraction were progenitors (versus 0.1% in the negative fraction). The expression of EP-1 antigen is greatly enhanced in K562 cells, using inducers of hemoglobin synthesis. McAb EP-2 fails to inhibit BFU-E and CFU-E colony formation in complement-dependent cytotoxicity assays. EP-2 antigen is predominantly expressed on in vitro derived immature erythroblasts, and it is weakly expressed on mature erythroblasts. The findings with McAb EP-1 provide evidence that erythroid progenitors (BFU-E and CFU-E) express determinants that fail to be expressed on other progenitor cells and hence appear to be unique to the erythroid lineage. McAb EP-1 and EP-2 are potentially useful for studies of erythroid differentiation and progenitor cell isolation.


2020 ◽  
pp. 39-47
Author(s):  
I.A. Zhabchenko

The article presents modern data on the etiology, pathogenesis, diagnosis, prevention and treatment of iron deficiency anemia (IDA) and anemia of chronic disease, as well as their combination on the eve of and during pregnancy. The emphasis is made on the role of iron deficiency of any etiology in the development of obstetric and perinatal complications, especially its impact on the central nervous system formation and further psychophysical child development. Need for prevention of iron deficiency states in risk groups which includes all women of reproductive age who have menstruation is shown based on evidence-based medicine data. Effectiveness and safety of modern drugs containing iron in oral and parenteral forms has analyzed. The paper presents data on the safety and effectiveness of an innovative form of ferric iron in the form of liposomal iron, which differs in the mechanism of action, digestibility and the absence of side effects typical for this group of drugs. According to various authors the frequency of IDA in pregnant women ranges up to 80%, in puerperas up to 40%. It is unimpossible to stop IDA without iron supplementation only with an iron-rich diet. Two main groups of iron preparations are used to correct iron deficiency differing in the valence of iron atoms – bivalent iron salts and trivalent complexes. These drugs differ in the tolerability and bioavailability of atomic iron. Liposomal iron is a new drug for treatment of iron deficiency and IDA today; it has an innovative way of iron delivery to the body. Liposomal iron has advantages for the prevention of anemia in patients with anemia of chronic disease or its combination with IDA (inflammatory bowel diseases, obesity, after resection of the stomach and intestines, etc.). An innovative form of liposomal iron in Ukraine is represented by a dietary supplement Ferroview containing 30 mg of elemental iron, that is corresponds to the average prophylactic dose recommended in WHO documents.


Sign in / Sign up

Export Citation Format

Share Document