scholarly journals A small climate-amplifying effect of climate-carbon cycle feedback

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuanze Zhang ◽  
Ying-Ping Wang ◽  
Peter J. Rayner ◽  
Philippe Ciais ◽  
Kun Huang ◽  
...  

AbstractThe climate-carbon cycle feedback is one of the most important climate-amplifying feedbacks of the Earth system, and is quantified as a function of carbon-concentration feedback parameter (β) and carbon-climate feedback parameter (γ). However, the global climate-amplifying effect from this feedback loop (determined by the gain factor, g) has not been quantified from observations. Here we apply a Fourier analysis-based carbon cycle feedback framework to the reconstructed records from 1850 to 2017 and 1000 to 1850 to estimate β and γ. We show that the β-feedback varies by less than 10% with an average of 3.22 ± 0.32 GtC ppm−1 for 1880–2017, whereas the γ-feedback increases from −33 ± 14 GtC K−1 on a decadal scale to −122 ± 60 GtC K−1 on a centennial scale for 1000–1850. Feedback analysis further reveals that the current amplification effect from the carbon cycle feedback is small (g is 0.01 ± 0.05), which is much lower than the estimates by the advanced Earth system models (g is 0.09 ± 0.04 for the historical period and is 0.15 ± 0.08 for the RCP8.5 scenario), implying that the future allowable CO2 emissions could be 9 ± 7% more. Therefore, our findings provide new insights about the strength of climate-carbon cycle feedback and about observational constraints on models for projecting future climate.

2018 ◽  
Vol 9 (2) ◽  
pp. 507-523 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.


2015 ◽  
Vol 6 (1) ◽  
pp. 351-406 ◽  
Author(s):  
F. Lehner ◽  
F. Joos ◽  
C. C. Raible ◽  
J. Mignot ◽  
A. Born ◽  
...  

Abstract. Under the protocols of the Paleoclimate and Coupled Modelling Intercomparison Projects a number of simulations were produced that provide a range of potential climate evolutions from the last millennium to the end of the current century. Here, we present the first simulation with the Community Earth System Model (CESM), which includes an interactive carbon cycle, that continuously covers the last millennium, the historical period, and the twenty-first century. Besides state-of-the-art forcing reconstructions, we apply a modified reconstruction of total solar irradiance to shed light on the issue of forcing uncertainty in the context of the last millennium. Nevertheless, we find that structural uncertainties between different models can still dominate over forcing uncertainty for quantities such as hemispheric temperatures or the land and ocean carbon cycle response. Comparing with other model simulations we find forced decadal-scale variability to occur mainly after volcanic eruptions, while during other periods internal variability masks potentially forced signals and calls for larger ensembles in paleoclimate modeling studies. At the same time, we fail to attribute millennial temperature trends to orbital forcing, as has been suggested recently. The climate-carbon cycle sensitivity in CESM during the last millennium is estimated to be about 1.3 ppm °C−1. However, the dependence of this sensitivity on the exact time period and scale illustrates the prevailing challenge of deriving robust constrains on this quantity from paleoclimate proxies. In particular, the response of the land carbon cycle to volcanic forcing shows fundamental differences between different models. In CESM the tropical land dictates the response to volcanoes with a distinct behavior for large and moderate eruptions. Under anthropogenic emissions, global land and ocean carbon uptake rates emerge from the envelope of interannual natural variability as simulated for the last millennium by about year 1947 and 1877, respectively.


2017 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs.


2012 ◽  
Vol 9 (7) ◽  
pp. 8693-8732 ◽  
Author(s):  
J. Segschneider ◽  
A. Beitsch ◽  
C. Timmreck ◽  
V. Brovkin ◽  
T. Ilyina ◽  
...  

Abstract. The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a contol experiment and run for 200 yr after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 yr after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields, and ice cover. This physics driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a distinct loss of carbon in the initial years after the eruption which has not been present in simulations of smaller scale eruptions. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric carbon content in response to the land's gain. In summary, we find that the volcanic eruption has long lasting effects on the carbon cycle: after 200 yr, the ocean and the land carbon pools are still different from the pre-eruption state, and the land carbon pools (vegetation and soil) show some long lasting local anomalies that are only partly visible in the global signal.


2021 ◽  
Author(s):  
Charles Koven ◽  
Vivek K. Arora ◽  
Patricia Cadule ◽  
Rosie A. Fisher ◽  
Chris D. Jones ◽  
...  

Abstract. Future climate projections from Earth system models (ESMs) typically focus on the timescale of this century. We use a set of four ESMs and one Earth system model of intermediate complexity (EMIC) to explore the dynamics of the Earth’s climate and carbon cycles under contrasting emissions trajectories beyond this century, to the year 2300. The trajectories include a very high emissions, unmitigated fossil-fuel driven scenario, as well as a second mitigation scenario that diverges from the first scenario after 2040 and features an “overshoot”, followed by stabilization of atmospheric CO2 concentrations by means of large net-negative CO2 emissions. In both scenarios, and for all models considered here, the terrestrial system switches from being a net sink to either a neutral state or a net source of carbon, though for different reasons and centered in different geographic regions, depending on both the model and the scenario. The ocean carbon system remains a sink, albeit weakened by climate-carbon feedbacks, in all models under the high emissions scenario, and switches from sink to source in the overshoot scenario. The global mean temperature anomaly generally follows the trajectories of cumulative carbon emissions, except that 23rd-century warming continues after the cessation of carbon emissions in several models, both in the high emissions scenario and in one model in the overshoot scenario. While ocean carbon cycle responses qualitatively agree both in globally integrated and zonal-mean dynamics in both scenarios, the land models qualitatively disagree in zonal-mean dynamics, in the relative roles of vegetation and soil in driving C fluxes, in the response of the sink to CO2, and in the timing of the sink-source transition, particularly in the high emissions scenario. The lack of agreement among land models on the mechanisms and geographic patterns of carbon cycle feedbacks, alongside the potential for lagged physical climate dynamics to cause warming long after CO2 concentrations have stabilized, point to the possibility of surprises in the climate system beyond the 21st century time horizon, even under relatively mitigated global warming scenarios, which should be taken into consideration when setting global climate policy.


2021 ◽  
Author(s):  
Yann Quilcaille ◽  
Thomas Gasser

<p>While Earth system models (ESM) provide spatially detailed process-based outputs, they present heavy computational costs. Reduced complexity models such as OSCAR are calibrated on those complex models and provide an alternative with faster calculations but lower resolutions. Yet, reduced-complexity models need to be evaluated and validated. We diagnose the newest version of OSCAR (v3.1) using observations and results from ESMs and the current Coupled Model Intercomparison Project 6. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic framework, reaching a total of 567,700,000 simulated years. Here, we showcase these results. A first highlight of this exercise is the unstability of the model for high-warming scenarios, which we attribute to the ocean carbon cycle module. The diverging runs caused by this unstability were discarded in the post-processing. The ensuing main results were further obtained by weighting each physical parametrizations based on their performance to replicate a set of observations. Overall, OSCAR v3.1 qualitively behaves like complex ESMs, for all aspects of the Earth system, although we observe a number of quantitative differences with state-of-the-art models. Some specific features of OSCAR contribute in these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands and permafrost emissions. Nevertheless, the low sensitivity of the land carbon cycle to climate change, the unstability of the ocean carbon cycle, the seemingly over-constrained climate module, and the strong climate feedback over short-lived species, all call for an improvement of these aspects in OSCAR. Beyond providing a key diagnosis of the model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large set of CMIP6 simulations all run consistently with a probalistic model.</p>


2022 ◽  
Author(s):  
Yann Quilcaille ◽  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher

Abstract. While Earth system models (ESMs) are process-based and can be run at high resolutions, they are only limited by computational costs. Reduced complexity models, also called simple climate models or compact models, provide a much cheaper alternative, although at a loss of spatial information. Their structure relies on the sciences of the Earth system, but with a calibration against the most complex models. Therefore it remains important to evaluate and validate reduced complexity models. Here, we diagnose such a model the newest version of OSCAR (v3.1) using observations and results from ESMs from the current Coupled Model Intercomparison Project 6. A total of 99 experiments are selected for simulation with OSCAR v3.1 in a probabilistic framework, reaching a total of 567,700,000 simulated years. A first highlight of this exercise that the ocean carbon cycle of the model may diverge under some parametrizations and for high-warming scenarios. The diverging runs caused by this unstability were discarded in the post-processing. Then, each physical parametrization is weighted based on its performance against a set of observations, providing us with constrained results. Overall, OSCAR v3.1 shows good agreement with observations, ESMs and emerging properties. It qualitively reproduces the responses of complex ESMs, for all aspects of the Earth system. We observe some quantitative differences with these models, most of them being due to the observational constraints. Some specific features of OSCAR also contribute to these differences, such as its fully interactive atmospheric chemistry and endogenous calculations of biomass burning, wetlands CH4 and permafrost CH4 and CO2 emissions. The main points of improvements are a low sensitivity of the land carbon cycle to climate change, an unstability of the ocean carbon cycle, the seemingly too simple climate module, and the too strong climate feedback involving short-lived species. Beyond providing a key diagnosis of the OSCAR model in the context of the reduced-complexity models intercomparison project (RCMIP), this work is also meant to help with the upcoming calibration of OSCAR on CMIP6 results, and to provide a large group of CMIP6 simulations run consistently within a probabilistic framework.


2021 ◽  
Author(s):  
Diego Jiménez-de-la-Cuesta

<p>Observations and models indicate a varying radiative response of the Earth system to CO<sub>2</sub> forcing. This variation introduces large uncertainties in the climate sensitivity estimates to increasing atmospheric CO<sub>2</sub> concentration. This variation is represented as an additional feedback mechanism in energy-balance models, which depends on more than only the surface temperature change. Models and observations also indicate that a spatio-temporal pattern in the surface warming controls this additional contribution to the radiative response. However, several authors picture this effect as a feedback change in the atmosphere, reducing the role of the ocean's enthalpy-uptake variations. I use a widely-known linearised conceptual energy-balance model and its analytical solutions to find an explicit expression of the radiative response and its temporal evolution. This explicit expression provides another timescale in the Earth system, as the ocean-atmosphere coupling modulates the radiative response. Thus, to understand the variation of the climate feedback parameter, we need not only to know its relation to the spatio-temporal warming pattern but an improved picture of the ocean-atmosphere coupling that generates the pattern.</p>


2019 ◽  
Vol 5 (4) ◽  
pp. 282-295 ◽  
Author(s):  
Richard G. Williams ◽  
Anna Katavouta ◽  
Philip Goodwin

AbstractClimate change involves a direct response of the climate system to forcing which is amplified or damped by feedbacks operating in the climate system. Carbon-cycle feedbacks alter the land and ocean carbon inventories and so act to reduce or enhance the increase in atmospheric CO2 from carbon emissions. The prevailing framework for carbon-cycle feedbacks connect changes in land and ocean carbon inventories with a linear sum of dependencies on atmospheric CO2 and surface temperature. Carbon-cycle responses and feedbacks provide competing contributions: the dominant effect is that increasing atmospheric CO2 acts to enhance the land and ocean carbon stores, so providing a negative response and feedback to the original increase in atmospheric CO2, while rising surface temperature acts to reduce the land and ocean carbon stores, so providing a weaker positive feedback for atmospheric CO2. The carbon response and feedback of the land and ocean system may be expressed in terms of a combined carbon response and feedback parameter, λcarbon in units of W m− 2K− 1, and is linearly related to the physical climate feedback parameter, λclimate, revealing how carbon and climate responses and feedbacks are inter-connected. The magnitude and uncertainties in the carbon-cycle response and feedback parameter are comparable with the magnitude and uncertainties in the climate feedback parameter from clouds. Further mechanistic insight needs to be gained into how the carbon-cycle feedbacks are controlled for the land and ocean, particularly to separate often competing effects from changes in atmospheric CO2 and climate forcing.


2020 ◽  
Author(s):  
Jerry F. Tjiputra ◽  
Jörg Schwinger ◽  
Mats Bentsen ◽  
Anne L. Morée ◽  
Shuang Gao ◽  
...  

Abstract. The ocean carbon cycle is a key player in the climate system through its role in regulating atmospheric carbon dioxide concentration as well as other processes that alter the Earth's radiative balance. In the second version of the Norwegian Earth System Model (NorESM2), the oceanic carbon cycle component has gone through numerous updates that include, amongst others, improved process representations, increased interactions with the atmosphere, and additional new tracers. Oceanic dimethyl sulfide (DMS) is now prognostically simulated and its fluxes are directly coupled with the atmospheric component, allowing for a direct feedback to the climate. Atmospheric nitrogen deposition and additional external inputs of other biogeochemical tracers through riverine are recently included in the model. The implementation of new tracers such as 'preformed' and 'natural' tracers enables a separation of physical from biogeochemical drivers as well as of internal from external forcings and hence a better diagnostic of the simulated biogeochemical variability. Carbon isotope tracers have been implemented and will be relevant for studying long-term past climate changes. Here, we describe these new model implementations and present the evaluation of the model's performance in simulating the observed climatological states of water column biogeochemistry as well as in simulating the transient evolution over the historical period. Compared to its predecessor NorESM1, the new model's performance has improved considerably in many aspects. In the interior, the observed spatial patterns of nutrients, oxygen, and carbon chemistry are better reproduced, reducing the overall model biases. A new set of ecosystem parameters and improved mixed layer dynamics improves the representation of upper ocean processes (biological production and air-sea CO2 fluxes) at seasonal time scale. Transient warming and air-sea CO2 fluxes over the historical period are also in good agreement with observation-based estimates. NorESM2 participates in the Coupled Model Intercomparison Project phase 6 (CMIP6) through DECK (Diagnostic, Evaluation and Characterization of Klima) and several endorsed MIP-simulations.


Sign in / Sign up

Export Citation Format

Share Document