scholarly journals A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric A. Kittlaus ◽  
Danny Eliyahu ◽  
Setareh Ganji ◽  
Skip Williams ◽  
Andrey B. Matsko ◽  
...  

AbstractMicrowave photonics offers transformative capabilities for ultra-wideband electronic signal processing and frequency synthesis with record-low phase noise levels. Despite the intrinsic bandwidth of optical systems operating at ~200 THz carrier frequencies, many schemes for high-performance photonics-based microwave generation lack broadband tunability, and experience tradeoffs between noise level, complexity, and frequency. An alternative approach uses direct frequency down-mixing of two tunable semiconductor lasers on a fast photodiode. This form of optical heterodyning is frequency-agile, but experimental realizations have been hindered by the relatively high noise of free-running lasers. Here, we demonstrate a heterodyne synthesizer based on ultralow-noise self-injection-locked lasers, enabling highly-coherent, photonics-based microwave and millimeter-wave generation. Continuously-tunable operation is realized from 1-104 GHz, with constant phase noise of -109 dBc/Hz at 100 kHz offset from carrier. To explore its practical utility, we leverage this photonic source as the local oscillator within a 95-GHz frequency-modulated continuous wave (FMCW) radar. Through field testing, we observe dramatic reduction in phase-noise-related Doppler and ranging artifacts as compared to the radar’s existing electronic synthesizer. These results establish strong potential for coherent heterodyne millimeter-wave generation, opening the door to a variety of future applications including high-dynamic range remote sensing, wideband wireless communications, and THz spectroscopy.

Author(s):  
Mantas Sakalas ◽  
Niko Joram ◽  
Frank Ellinger

Abstract This study presents an ultra-wideband receiver front-end, designed for a reconfigurable frequency modulated continuous wave radar in a 130 nm SiGe BiCMOS technology. A variety of innovative circuit components and design techniques were employed to achieve the ultra-wide bandwidth, low noise figure (NF), good linearity, and circuit ruggedness to high input power levels. The designed front-end is capable of achieving 1.5–40 GHz bandwidth, 30 dB conversion gain, a double sideband NF of 6–10.7 dB, input return loss better than 7.5 dB and an input referred 1 dB compression point of −23 dBm. The front-end withstands continuous wave power levels of at least 25 and 20 dBm at low band and high band inputs respectively. At 3 V supply voltage, the DC power consumption amounts to 302 mW when the low band is active and 352 mW for the high band case, whereas the total IC size is $3.08\, {\rm nm{^2}}$ .


2017 ◽  
Vol 9 (8) ◽  
pp. 1583-1590 ◽  
Author(s):  
Marco Mercuri ◽  
Paweł Barmuta ◽  
Ping Jack Soh ◽  
Paul Leroux ◽  
Dominique Schreurs

Continuous-wave (CW) radars have been recently investigated in healthcare aiming at contactless health monitoring. However, a major problem in monostatic CW architectures is represented by the unwanted leakage produced by poor isolation between transmitter and receiver, which can drastically decrease the receiver's sensitivity reducing therefore the radar dynamic range. Although this situation can be easily controlled in case of narrowband CW radar by an appropriate passive microwave design, it becomes much more complicated in case of stepped-frequency CW and frequency-modulated CW architectures that present an ultra-wideband nature. In this paper, a monostatic CW radar integrating a tunable wideband leakage canceler aiming at indoor tagless localization is presented and discussed. The use of the feedforward canceler allows a strong reduction of the unwanted leakage over the whole radar bandwidth. Experimental results demonstrate the feasibility of this approach, showing an outstanding improvement of the radar dynamic range.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


2019 ◽  
Vol 11 (5-6) ◽  
pp. 447-455 ◽  
Author(s):  
Gordon Notzon ◽  
Robert Storch ◽  
Thomas Musch ◽  
Michael Vogt

AbstractIn the area of electromagnetic metrology, binary coded excitation signals become more and more important and various binary coded sequences are available. The measurement approach is to assess the impulse response function of a device under test by correlating the response signal with the excitation signal. In order to achieve a high measurement reproducibility as well as a high dynamic range, the generated binary coded signals have to provide low-noise. In this contribution, a low-noise signal generator realized with a field programmable gate array is presented. The performance investigation of different kinds of binary coded excitation signals and different correlation concepts have been practically investigated. With a chip rate of 5 Gchip/s, the generator can be utilized for ultra-wideband applications. In order to allow for a low-noise and long-term stable signal generation, a new clock generator concept is presented and results of phase noise measurements are shown. Furthermore, an algorithm to fast and precisely shifting the time lag between two binary coded signals for correlating excitation and response signals with a hardware correlator is presented. Finally, the realized demonstrator system is tested using two commonly used types of binary coded sequences.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2999 ◽  
Author(s):  
Yong Wang ◽  
Wen Wang ◽  
Mu Zhou ◽  
Aihu Ren ◽  
Zengshan Tian

In recent years, non-contact radar detection technology has been able to achieve long-term and long-range detection for the breathing and heartbeat signals. Compared with contact-based detection methods, it brings a more comfortable and a faster experience to the human body, and it has gradually received attention in the field of radar sensing. Therefore, this paper extends the application of millimeter-wave radar to the field of health care. The millimeter-wave radar first transmits the frequency-modulated continuous wave (FMCW) and collects the echo signals of the human body. Then, the phase information of the intermediate frequency (IF) signals including the breathing and heartbeat signals are extracted, and the Direct Current (DC) offset of the phase information is corrected using the circle center dynamic tracking algorithm. The extended differential and cross-multiply (DACM) is further applied for phase unwrapping. We propose two algorithms, namely the compressive sensing based on orthogonal matching pursuit (CS-OMP) algorithm and rigrsure adaptive soft threshold noise reduction based on discrete wavelet transform (RA-DWT) algorithm, to separate and reconstruct the breathing and heartbeat signals. Then, a frequency-domain fast Fourier transform and a time-domain autocorrelation estimation algorithm are proposed to calculate the respiratory and heartbeat rates. The proposed algorithms are compared with the contact-based detection ones. The results demonstrate that the proposed algorithms effectively suppress the noise and harmonic interference, and the accuracies of the proposed algorithms for both respiratory rate and heartbeat rate reach about 93%.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Patrick Fleischmann ◽  
Heinz Mathis ◽  
Jakub Kucera ◽  
Stefan Dahinden

The cross-correlation method allows phase-noise measurements of high-quality devices with very low noise levels, using reference sources with higher noise levels than the device under test. To implement this method, a phase-noise analyzer needs to compute the cross-spectral density, that is, the Fourier transform of the cross-correlation, of two time series over a wide frequency range, from fractions of Hz to tens of MHz. Furthermore, the analyzer requires a high dynamic range to accommodate the phase noise of high-quality oscillators that may fall off by more than 100 dB from close-in noise to the noise floor at large frequency offsets. This paper describes the efficient implementation of a cross-spectrum analyzer in a low-cost FPGA, as part of a modern phase-noise analyzer with very fast measurement time.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1819-1835
Author(s):  
David Palandro ◽  
Joseph Mullin

ABSTRACT (2017-044) The IOGP Arctic Oil Spill Response Technology Joint Industry Program’s Remote Sensing Technical Working Group was initiated in 2012 with the objective to expand the oil industry’s detection and monitoring capabilities for spills on, under, around or in ice. The first phase produced two state-of-knowledge reports assessing sensor capabilities above and below the ice. A key finding from these studies was that many existing remote sensing platforms and sensors originally developed for oil on open water can also provide effective sensing in a broad range of ice conditions. The second phase covered an integrated experiment that included sensor testing in a cold basin, followed by modeling to determine potential applicability of different sensors in a wider range of sea-ice conditions. Five above-ice (Frequency Modulated Continuous Wave Radar (FMCW), ground penetrating radar (GPR), visible and infrared cameras and laser fluorescence polarization [LP] sensor) and seven below-ice (high dynamic range optical camera, visible and infrared spectrometer, LP sensor, broadband and narrowband sonar and multibeam echo sounder) sensors were tested with varying ice thickness and oil concentrations at the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) over a three-month period. All of the sensors used during this experiment showed some ability to detect oil on, in, or below ice under certain conditions and major advances in the knowledge of sensor applicability were made. Three follow-on projects (late 2016) include an operations guide providing a concise operationally oriented review of the different sensor technologies in key oil and ice scenarios, and additional field testing with medium to long-wave infrared, and the FMCW radar.


Sign in / Sign up

Export Citation Format

Share Document