scholarly journals A low-cost and shielding-free ultra-low-field brain MRI scanner

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yilong Liu ◽  
Alex T. L. Leong ◽  
Yujiao Zhao ◽  
Linfang Xiao ◽  
Henry K. F. Mak ◽  
...  

AbstractMagnetic resonance imaging is a key diagnostic tool in modern healthcare, yet it can be cost-prohibitive given the high installation, maintenance and operation costs of the machinery. There are approximately seven scanners per million inhabitants and over 90% are concentrated in high-income countries. We describe an ultra-low-field brain MRI scanner that operates using a standard AC power outlet and is low cost to build. Using a permanent 0.055 Tesla Samarium-cobalt magnet and deep learning for cancellation of electromagnetic interference, it requires neither magnetic nor radiofrequency shielding cages. The scanner is compact, mobile, and acoustically quiet during scanning. We implement four standard clinical neuroimaging protocols (T1- and T2-weighted, fluid-attenuated inversion recovery like, and diffusion-weighted imaging) on this system, and demonstrate preliminary feasibility in diagnosing brain tumor and stroke. Such technology has the potential to meet clinical needs at point of care or in low and middle income countries.

2021 ◽  
pp. 004947552199818
Author(s):  
Ellen Wilkinson ◽  
Noel Aruparayil ◽  
J Gnanaraj ◽  
Julia Brown ◽  
David Jayne

Laparoscopic surgery has the potential to improve care in resource-deprived low- and-middle-income countries (LMICs). This study aims to analyse the barriers to training in laparoscopic surgery in LMICs. Medline, Embase, Global Health and Web of Science were searched using ‘LMIC’, ‘Laparoscopy’ and ‘Training’. Two researchers screened results with mutual agreement. Included papers were in English, focused on abdominal laparoscopy and training in LMICs. PRISMA guidelines were followed; 2992 records were screened, and 86 full-text articles reviewed to give 26 key papers. Thematic grouping identified seven key barriers: funding; availability and maintenance of equipment; local access to experienced laparoscopic trainers; stakeholder dynamics; lack of knowledge on effective training curricula; surgical departmental structure and practical opportunities for trainees. In low-resource settings, technological advances may offer low-cost solutions in the successful implementation of laparoscopic training and improve access to surgical care.


2018 ◽  
Vol 45 (4) ◽  
pp. E17 ◽  
Author(s):  
Federico Nicolosi ◽  
Zefferino Rossini ◽  
Ismail Zaed ◽  
Angelos G. Kolias ◽  
Maurizio Fornari ◽  
...  

OBJECTIVENeurosurgical training is usually based on traditional sources of education, such as papers, books, direct surgical experience, and cadaveric hands-on courses. In low-middle income countries, standard education programs are often unavailable, mainly owing to the lack of human and economic resources. Introducing digital platforms in these settings could be an alternative solution for bridging the gap between Western and poor countries in neurosurgical knowledge.METHODSThe authors identified from the Internet the main digital platforms that could easily be adopted in low-middle income countries. They selected free/low-cost mobile content with high educational impact.RESULTSThe platforms that were identified as fulfilling the characteristics described above are WFNS Young Neurosurgeons Forum Stream, Brainbook, NeuroMind, UpSurgeOn, The Neurosurgical Atlas, Touch surgery, The 100 UCLA Subjects in Neurosurgery, Neurosurgery Survival Guide, EANS (European Association of Neurosurgical Societies) Academy, Neurosurgical.TV, 3D Neuroanatomy, The Rhoton Collection, and Hinari. These platforms consist of webinars, 3D interactive neuroanatomy and neurosurgery content, videos, and e-learning programs supported by neurosurgical associations or journals.CONCLUSIONSDigital education is an emerging tool for contributing to the spread of information in the neurosurgical community. The continuous improvement in the quality of content will rapidly increase the scientific validity of digital programs. In conclusion, the fast and easy access to digital resources could contribute to promote neurosurgical education in countries with limited facilities.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1253
Author(s):  
Imran Shahid ◽  
Abdullah R. Alzahrani ◽  
Saeed S. Al-Ghamdi ◽  
Ibrahim M. Alanazi ◽  
Sidra Rehman ◽  
...  

The simplification of current hepatitis C diagnostic algorithms and the emergence of digital diagnostic devices will be very crucial to achieving the WHO’s set goals of hepatitis C diagnosis (i.e., 90%) by 2030. From the last decade, hepatitis C diagnosis has been revolutionized by the advent and approval of state-of-the-art HCV diagnostic platforms which have been efficiently implemented in high-risk HCV populations in developed nations as well as in some low-to-middle income countries (LMICs) to identify millions of undiagnosed hepatitis C-infected individuals. Point-of-care (POC) rapid diagnostic tests (RDTs; POC-RDTs), RNA reflex testing, hepatitis C self-test assays, and dried blood spot (DBS) sample analysis have been proven their diagnostic worth in real-world clinical experiences both at centralized and decentralized diagnostic settings, in mass hepatitis C screening campaigns, and hard-to-reach aboriginal hepatitis C populations in remote areas. The present review article overviews the significance of current and emerging hepatitis C diagnostic packages to subvert the public health care burden of this ‘silent epidemic’ worldwide. We also highlight the challenges that remain to be met about the affordability, accessibility, and health system-related barriers to overcome while modulating the hepatitis C care cascade to adopt a ‘test and treat’ strategy for every hepatitis C-affected individual. We also elaborate some key measures and strategies in terms of policy and progress to be part of hepatitis C care plans to effectively link diagnosis to care cascade for rapid treatment uptake and, consequently, hepatitis C cure.


2021 ◽  
pp. 1-3
Author(s):  
Nicholas Clute-Reinig ◽  
Suman Jayadev ◽  
Kristoffer Rhoads ◽  
Anne-Laure Le Ny

Dementia and Alzheimer’s disease (AD) are global health crises, with most affected individuals living in low- or middle-income countries. While research into diagnostics and therapeutics remains focused exclusively on high-income populations, recent technological breakthroughs suggest that low-cost AD diagnostics may soon be possible. However, as this disease shifts onto those with the least financial and structural ability to shoulder its burden, it is incumbent on high-income countries to develop accessible AD healthcare. We argue that there is a scientific and ethical mandate to develop low-cost diagnostics that will not only benefit patients in low-and middle-income countries but the AD field as a whole.


Author(s):  
Siddhartha Gairola ◽  
Murtuza Bohra ◽  
Nadeem Shaheer ◽  
Navya Jayaprakash ◽  
Pallavi Joshi ◽  
...  

Keratoconus is a severe eye disease affecting the cornea (the clear, dome-shaped outer surface of the eye), causing it to become thin and develop a conical bulge. The diagnosis of keratoconus requires sophisticated ophthalmic devices which are non-portable and very expensive. This makes early detection of keratoconus inaccessible to large populations in low-and middle-income countries, making it a leading cause for partial/complete blindness among such populations. We propose SmartKC, a low-cost, smartphone-based keratoconus diagnosis system comprising of a 3D-printed placido's disc attachment, an LED light strip, and an intelligent smartphone app to capture the reflection of the placido rings on the cornea. An image processing pipeline analyzes the corneal image and uses the smartphone's camera parameters, the placido rings' 3D location, the pixel location of the reflected placido rings and the setup's working distance to construct the corneal surface, via the Arc-Step method and Zernike polynomials based surface fitting. In a clinical study with 101 distinct eyes, we found that SmartKC achieves a sensitivity of 87.8% and a specificity of 80.4%. Moreover, the quantitative curvature estimates (sim-K) strongly correlate with a gold-standard medical device (Pearson correlation coefficient = 0.77). Our results indicate that SmartKC has the potential to be used as a keratoconus screening tool under real-world medical settings.


2017 ◽  
Vol 4 ◽  
pp. 205566831770873 ◽  
Author(s):  
Michelle Jillian Johnson ◽  
Roshan Rai ◽  
Sarath Barathi ◽  
Rochelle Mendonca ◽  
Karla Bustamante-Valles

Affordable technology-assisted stroke rehabilitation approaches can improve access to rehabilitation for low-resource environments characterized by the limited availability of rehabilitation experts and poor rehabilitation infrastructure. This paper describes the evolution of an approach to the implementation of affordable, technology-assisted stroke rehabilitation which relies on low-cost mechatronic/robot devices integrated with off-the-shelf or custom games. Important lessons learned from the evolution and use of Theradrive in the USA and in Mexico are briefly described. We present how a stronger and more compact version of the Theradrive is leveraged in the development of a new low-cost, all-in-one robot gym with four exercise stations for upper and lower limb therapy called Rehab Community-based Affordable Robot Exercise System (Rehab C.A.R.E.S). Three of the exercise stations are designed to accommodate versions of the 1 DOF haptic Theradrive with different custom handles or off-the-shelf commercial motion machine. The fourth station leverages a unique configuration of Wii-boards. Overall, results from testing versions of Theradrive in USA and Mexico in a robot gym suggest that the resulting presentation of the Rehab C.A.R.E.S robot gym can be deployed as an affordable computer/robot-assisted solution for stroke rehabilitation in developed and developing countries.


Sign in / Sign up

Export Citation Format

Share Document