scholarly journals Integrated near-infrared spectral sensing

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kaylee D. Hakkel ◽  
Maurangelo Petruzzella ◽  
Fang Ou ◽  
Anne van Klinken ◽  
Francesco Pagliano ◽  
...  

AbstractSpectral sensing is increasingly used in applications ranging from industrial process monitoring to agriculture. Sensing is usually performed by measuring reflected or transmitted light with a spectrometer and processing the resulting spectra. However, realizing compact and mass-manufacturable spectrometers is a major challenge, particularly in the infrared spectral region where chemical information is most prominent. Here we propose a different approach to spectral sensing which dramatically simplifies the requirements on the hardware and allows the monolithic integration of the sensors. We use an array of resonant-cavity-enhanced photodetectors, each featuring a distinct spectral response in the 850-1700 nm wavelength range. We show that prediction models can be built directly using the responses of the photodetectors, despite the presence of multiple broad peaks, releasing the need for spectral reconstruction. The large etendue and responsivity allow us to demonstrate the application of an integrated near-infrared spectral sensor in relevant problems, namely milk and plastic sensing. Our results open the way to spectral sensors with minimal size, cost and complexity for industrial and consumer applications.

NIR news ◽  
2020 ◽  
Vol 31 (7-8) ◽  
pp. 9-13
Author(s):  
Robert Zimmerleiter ◽  
Elisabeth Leiss-Holzinger ◽  
Eva Maria Wagner ◽  
Kathrin Kober-Rychli ◽  
Martin Wagner ◽  
...  

In this article, we demonstrate a promising inline near-infrared measurement scheme for 24/7 biofilm monitoring based on cost-effective microelectromechanical system-based spectrometer technology. The shown near-infrared spectral data, acquired at a beer-canning line during a representative time span of 10 days, are analyzed by means of principal component analysis and the performance of the monitoring system and its capability to identify biofilms on its sensor surface are investigated by comparing spectral response with results of offline polymerase chain reaction measurements of smear samples. Correlations between presence of a biofilm and its thickness with scores on PC1 and PC2, respectively, were observed.


2015 ◽  
Vol 3 (13) ◽  
pp. 6756-6760 ◽  
Author(s):  
Weiwei Li ◽  
Yang An ◽  
Martijn M. Wienk ◽  
René A. J. Janssen

Four different thiazole-flanked diketopyrrolopyrrole-based polymers were applied as an electron acceptor in bulk heterojunction solar cells with poly(3-hexylthiophene) as an electron donor.


2010 ◽  
Vol 670 ◽  
pp. 118-121 ◽  
Author(s):  
A.M. Taleb ◽  
K.A. Al-Naimee ◽  
S.F. Abdalah ◽  
Riccardo Meucci ◽  
F.T. Arecchi

The experimental evidence of the effect of femtosecond laser pulses on the spectral response of a Silicon photovoltaic cell is demonstrated and investigated. The response of this device is covering the visible to near infrared spectral region. The responsivity of the photovoltaic cell is enhanced from 0.18A/W (0.5A/W to 0.85 A/W) to 0.25A/W, this means that the conversion efficiency increases from about 9% to about 14% due to irradiation effect. All treatments and measurements have been done at room temperature. The observed enhancement is related to the appearing of nano-structured groves in the 700-900 nm range.


2018 ◽  
Vol 22 (05) ◽  
pp. 398-405 ◽  
Author(s):  
Ping-Ping Hu ◽  
Jian-Yun Hou ◽  
Rui Guo ◽  
Su-Ping Jiang ◽  
Ming Zhou ◽  
...  

Cyanobacteriochromes (CBCRs) are biliprotein photoreceptors that only exist in cyanobacteria and have a broad spectral response range from ultra-violet to far-red. The red/green-type CBCRs can show red/green reversible photoconversion via a covalently bound phycocyanobilin (PCB). In recent years, several CBCRs binding with not only PCB but also biliverdin (BV) have been discovered, which raises the possibility of CBCRs being applied as optogenetic tools. Through molecular modification, we hope to engineer BV-binding CBCRs responsive to the near-infrared spectral region (650–900 nm), of which the red/green type of CBCRs are suitable resources for experimentation. Here, we use Slr1393g3 (the third GAF domain of a red/green photoswitching CBCR from Synechocystis sp. PCC 6803) as a template to perform such molecular evolution using both random mutagenesis and site-directed mutagenesis. After several rounds of random mutagenesis, we obtained several BV-binding variants of Slr1393g3. These BV-binding variants have a maximal absorbance at ̃690 nm and a fluorescence at ̃720 nm. Additionally, some of them have remarkable photochromicity between a far-red light-absorbing state and a red light-absorbing state. Based on the primary amino acid sequence and structural models, the Phe474 surrounding ring D of BV is thought as a crucial site for chromophore selectivity.


2017 ◽  
Vol 201 ◽  
pp. 137-139 ◽  
Author(s):  
Gaoyao Wei ◽  
Zhong Lu ◽  
Yichen Cai ◽  
Chenghua Sui

Author(s):  
H. Gao ◽  
Y. Ma ◽  
W. Liu ◽  
H. He

Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.


1992 ◽  
Vol 46 (5) ◽  
pp. 790-796 ◽  
Author(s):  
Su-Chin Lo ◽  
Chris W. Brown

A mathematical technique for the identification of components in the near-infrared spectra of liquid mixtures without any prior chemical information is demonstrated. Originally, the technique was developed for searching mid-infrared spectral libraries. It utilizes principal component analysis to generate an orthonormal reference library and to compute the projections or scores of a mixture spectrum onto the principal space spanned by the orthonormal set. Both library and mixture spectra are analyzed and processed in Fourier domain to enhance the searching performance. A calibration matrix is calculated from library scores and is used to predict the mixture composition. Five liquid mixtures were correctly identified with the use of the calibration algorithm, whereas only one mixture was correctly characterized with a straight dot-product metric. The predictions were verified with the use of an adaptive filter to remove each of the resulting components from the library and the mixture spectra. In addition, a similarity index between the original mixture spectrum and a regenerated mixture spectrum is used as a final confirmation of the predictions. The effects of random noise on the searching method were also examined, and further enhancements of searching performance are suggested for identifying poor-quality mixture spectra.


Sign in / Sign up

Export Citation Format

Share Document