scholarly journals Signatures of selection in recently domesticated macadamia

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jishan Lin ◽  
Wenping Zhang ◽  
Xingtan Zhang ◽  
Xiaokai Ma ◽  
Shengcheng Zhang ◽  
...  

AbstractMacadamia is a high value nut crop that is recently domesticated, ideal for testing the effect of artificial selection. Here, we sequence the genome of Hawaiian cultivar ‘Kau’ and assemble into 794 Mb in 14 pseudo-chromosomes with 37,728 genes. Genome analysis reveals a whole-genome duplication event, occurred 46.8 million years ago. Gene expansions occurred in gene families involves in fatty acid biosynthesis. Gene duplication of MADS-Box transcription factors in proanthocyanidin biosynthesis are relevant for seed coat development. Genome re-sequencing of 112 accessions reveals the origin of Hawaiian cultivars from Mount Bauple in southeast Queensland in Australia. Selective sweeps are detected in macadamia cultivars, including genes involved in fatty acid biosynthesis, seed coat development, and heat stress response. Such strong effects of artificial selection in few generations reveals the genomic basis for ‘one-step operation’ for clonal crop domestication. The knowledge gained could accelerate domestication of new crops from wild species.

1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Author(s):  
L. K. Dahiwade ◽  
S. R. Rochlani ◽  
P. B. Choudhari ◽  
R. P. Dhavale ◽  
H. N. Moreira

Background: Mycobacterium tuberculosis is a causative organism of tuberculosis, which is most deadly disease after cancer in a current decade. The development of multidrug and broadly drug- resistant strains making the tuberculosis problem more and more critical. In last 40 years, only one molecule is added to the treatment regimen. Generally, drug design and development programs are targeted proteins whose function is known to be essential to the bacterial cell. Objectives: Reported here are the development of 'S', 'N’ heterocycles as antimycobacterials targeting fatty acid biosynthesis. Material and Methods: In the present communication, rational development of anti-mycobacterial agent's targeting fatty acid biosynthesis has been done by integrating the pocket modelling and virtual analysis. Results: The identified potential 33 lead compounds were synthesized, characterized by physicochemical and spectroscopic methods like IR, NMR spectroscopy and further screened for antimycobacterial activity using isoniazid as standard. All the designed compounds have shown profound antimycobacterial activity. Conclusion: In this present communication, we found that 3c, 3f, 3l and 4k molecules had expressive desirable biological activity and specific interactions with fatty acids. Further optimization of these leads is necessary for the development of potential antimycobacterial drug candidate having less side effects.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 706
Author(s):  
Antonio J. Moreno-Pérez ◽  
Raquel Martins-Noguerol ◽  
Cristina DeAndrés-Gil ◽  
Mónica Venegas-Calerón ◽  
Rosario Sánchez ◽  
...  

Histone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds. Two master transcriptional regulators identified in this analysis, VIV1 (homologous to Arabidopsis ABI3) and FUS3, cooperate in the regulation of WRINKLED 1, a transcriptional factor regulating glycolysis, and fatty acid synthesis in developing oilseeds.


2021 ◽  
Vol 22 (11) ◽  
pp. 5951
Author(s):  
Xiaofei Zhou ◽  
Xiaoyu Ling ◽  
Huijuan Guo ◽  
Keyan Zhu-Salzman ◽  
Feng Ge ◽  
...  

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


1973 ◽  
Vol 248 (4) ◽  
pp. 1268-1276 ◽  
Author(s):  
Richard A. Jacobs ◽  
William S. Sly ◽  
Philip W. Majerus

1963 ◽  
Vol 238 (4) ◽  
pp. 1255-1261 ◽  
Author(s):  
Peter Goldman ◽  
A.W. Alberts ◽  
P. Roy Vagelos

Sign in / Sign up

Export Citation Format

Share Document