Unleashed sterol production in thale cress

Nature Plants ◽  
2019 ◽  
Vol 5 (11) ◽  
pp. 1112-1113 ◽  
Author(s):  
Sylvain Darnet ◽  
Hubert Schaller
Keyword(s):  
2018 ◽  
Vol 19 (10) ◽  
pp. 2876 ◽  
Author(s):  
Sabine Lüthje ◽  
Teresa Martinez-Cortes

Class III peroxidases are heme-containing proteins of the secretory pathway with a high redundance and versatile functions. Many soluble peroxidases have been characterized in great detail, whereas only a few studies exist on membrane-bound isoenzymes. Membrane localization of class III peroxidases has been demonstrated for tonoplast, plasma membrane and detergent resistant membrane fractions of different plant species. In silico analysis revealed transmembrane domains for about half of the class III peroxidases that are encoded by the maize (Zea mays) genome. Similar results have been found for other species like thale-cress (Arabidopsis thaliana), barrel medic (Medicago truncatula) and rice (Oryza sativa). Besides this, soluble peroxidases interact with tonoplast and plasma membranes by protein–protein interaction. The topology, spatiotemporal organization, molecular and biological functions of membrane-bound class III peroxidases are discussed. Besides a function in membrane protection and/or membrane repair, additional functions have been supported by experimental data and phylogenetics.


Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Samin Seddigh ◽  
Maryam Darabi

Abstractα-Glucosidases (αglus) (EC 3.2.1.20) have been detected in a wide range of plants, animals and microorganisms and are described by their ability to catalyze the hydrolysis of 1,4-α-glucosidic linkages, releasing α-glucose. In this study, 96 αglu protein sequences from 33 organisms species including different insects species, plants (including thale cress and rice), mammals (including human and mouse) and Mycobacterium tuberculosis as a bacterium were aligned. Sequences were analyzed by computational tools to predict the protein properties, such as molecular mass, isoelectric point, signal peptide, conserved motifs, transmembrane domain and secondary structure. Drosophila melanogaster (GenBank Accession No.: NP 610382) was chosen as one of the representatives of insects for further analyses. The tertiary structure of representative samples were acquired using the tertiary structure of oligo-1,6-glucosidase from Bacillus cereus (Protein Data Bank code: 1UOK) as a template by Phyre2 server. Protein structure analysis revealed there is a high identity among insects and other organisms. There were some similar functional domains between D. melanogaster and M. tuberculosis. The modeled αglu has a typical spatial structure in insects and exhibits a high similarity with other organisms, especially Arabidopsis thaliana. Phylogenetic analysis indicated that D. melanogaster αglu has a close relationship with other αglus from different insect families. According to these results, αglu in insects should be evolved from a common ancestor.


2001 ◽  
Vol 355 (3) ◽  
pp. 671-679 ◽  
Author(s):  
Nancy M. STEELE ◽  
Zdena SULOVÁ ◽  
Paul CAMPBELL ◽  
Janet BRAAM ◽  
Vladimír FARKAŠ ◽  
...  

To map the preferred cleavage sites of xyloglucan endotransglycosylases (XETs; EC 2.4.1.207) along the donor substrate chain, we incubated the enzymes with tamarind (Tamarindus indica) xyloglucan (donor substrate; ≈ 205kDa; 21µM) plus the nonasaccharide [3H]XLLGol (Gal2·Xyl3·Glc3· [3H]glucitol; acceptor substrate; 0.6µM). After short incubation times, to minimize multiple cleavages, the size of the 3H-labelled transglycosylation products (determined by gel-permeation chromatography) indicated the positions of the cleavage sites relative to the non-reducing terminus of the donor. There was very little difference between the size profiles of the products formed by any of ten XETs tested [one native XET purified from cauliflower (Brassica oleracea) florets, four native XET isoenzymes purified from etiolated mung-bean (Phaseolus aureus) shoots, native XETs purified from lentil (Lens culinaris) and nasturtium (Tropaeolum majus) seeds, and three insect-cell-produced thale-cress (Arabidopsis thaliana) XETs (EXGT, TCH4 and MERI-5)]. All such product profiles showed a good fit to a model in which the enzyme chooses its donor substrate independently of size and attacks it, once only, at a randomly selected cleavage site. The results therefore do not support the hypothesis that different XET isoenzymes are adapted to produce longer or shorter products such as might favour either the efficient integration of new xyloglucan into the cell wall or the re-structuring of old xyloglucan within an expanding wall.


2021 ◽  
Vol 9 ◽  
Author(s):  
Edel Pérez-López

Among the millions of microorganisms inhabiting the soils, some can be plant pathogens, meaning they can become a disease to plants. Some diseases are more well-known than others. This is the case of clubroot, a very atypical microorganism that infects cruciferous plants, such as cabbage, kale, canola, and the common research plant thale cress. In this article, I will tell you more about clubroot and clubroot disease because there is still a lot to discover about the pathogen and the disease. Maybe you will be part of our lab in the future and investigate a fascinating soil-borne pathogen.


1993 ◽  
Vol 294 (3) ◽  
pp. 821-828 ◽  
Author(s):  
R Dumas ◽  
G Curien ◽  
R T DeRose ◽  
R Douce

Towards the goal of gaining a better understanding of the molecular mechanisms controlling branched-chain-amino-acid biosynthesis in plants, we have isolated, sequenced and characterized a gene encoding acetohydroxy acid isomero-reductase (ketol-acid reductoisomerase) from Arabidopsis thaliana (thale cress). Comparison between the acetohydroxy acid isomeroreductase cDNA and the genomic sequence has allowed us to determine the exon structure of the coding region. The isolated acetohydroxy acid isomeroreductase gene is distributed over approx. 4.5 kbp and contains nine introns (79-347 bp). The transcriptional start site was found to be 52 bp upstream of the translational initiation site. Southern-blot analysis of A. thaliana genomic DNA shows that the acetohydroxy acid isomeroreductase is encoded by a single-copy gene.


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 469-481 ◽  
Author(s):  
Elisa Graña ◽  
Tamara Sotelo ◽  
Carla Díaz-Tielas ◽  
Manuel J. Reigosa ◽  
Adela M. Sánchez-Moreiras

Citral is a monoterpene commonly found as volatile component in many different aromatic plants. Although many studies have identified the presence of citral in phytotoxic essential oils, this work determines for the first time the potential herbicidal effect of citral on weeds. The use of citral against weeds and crops resulted in the potential for the management of barnyardgrass, redroot pigweed, and ribwort. Clear morphological differences were observed between adult thale cress plants exposed to citral in two different application methods: spraying and watering. Citral-sprayed and citral-watered thale cress plants showed completely different effects after treatment, suggesting that foliar or root absorption can determine the effectiveness of this compound. This work demonstrates that citral is effective not only on seedling metabolism but also on adult plants by inhibiting growth and development altering the plant oxidative status.


Sign in / Sign up

Export Citation Format

Share Document