donor substrate
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 19)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Chetna Dhembla ◽  
Usha Yadav ◽  
Suman Kundu ◽  
Monica Sundd

Lipoic acid is a sulfur containing cofactor, indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by Lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential action of Lipoate protein ligase B (LipB) and Lipoyl synthase (LipA). LipB uptakes octanoyl- chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. The molecular basis of substrate recognition by LipB is still not fully understood. Using E. coli LipB as a model enzyme, we show that an octanoyl-transferase mainly recognizes the 4-phosphopantetheine tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. LipB can accept octanoate- from its own ACP, noncognate ACPs, as well as C8-CoA. Further, our NMR studies demonstrate the presence of an adenine and phosphate binding site in LipB, akin to LplA. A loop containing 71RGG73 sequence, analogous to the lipoate binding loop of LplA is also conserved in LipB. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge might be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.


2021 ◽  
Vol 11 (23) ◽  
pp. 11493
Author(s):  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Martin Matwiejuk ◽  
Eduardo S. Moreno Prieto ◽  
Jan Muschiol ◽  
...  

The lacto-N-biosidase LnbB from Bifidobacterium bifidum JCM 1254 was engineered to improve its negligible transglycosylation efficiency with the purpose of enzymatically synthesizing lacto-N-tetraose (LNT; Gal-β1,3-GlcNAc-β1,3-Gal-β1,4-Glc) in one enzymatic step. LNT is a prebiotic human milk oligosaccharide in itself and constitutes the structural core of a range of more complex human milk oligosaccharides as well. Thirteen different LnbB variants were expressed and screened for transglycosylation activity by monitoring transglycosylation product formation using lacto-N-biose 1,2-oxazoline as donor substrate and lactose as acceptor substrate. LNT was the major reaction product, yet careful reaction analysis revealed the formation of three additional LNT isomers, which we identified to have a β1,2-linkage, a β1,6-linkage, and a 1,1-linkage, respectively, between lacto-N-biose (Gal-β1,3-GlcNAc) and lactose. Considering both maximal transglycosylation yield and regioselectivity as well as minimal product hydrolysis, the best variant was LnbB W394H, closely followed by W465H and Y419N. A high transglycosylation yield was also obtained with W394F, yet the substitution of W394 and W465 of the subsite −1 hydrophobic platform in the enzyme with His dramatically impaired the undesirable product hydrolysis as compared to substitution with Phe; the effect was most pronounced for W465. Using p-nitrophenyl-β-lacto-N-bioside as donor substrate manifested W394 as an important target position. The optimization of the substrate concentrations confirmed that high initial substrate concentration and high acceptor-to-donor ratio both favor transglycosylation.


Author(s):  
Takayuki Ohnuma ◽  
Tomoki Taku ◽  
Takeshi Nagatani ◽  
Atsushi Horii ◽  
Shun Imaoka ◽  
...  

Abstract Chemo-enzymatic synthesis of lacto-N-biose I (LNB) catalyzed by β-1,3 galactosidase from Bacillus circulans (BgaC) has been developed using 4,6-dimethoxy-1,3,5-triazin-2-yl β-galactopyranoside [DMT-β-Gal] and GlcNAc as the donor and acceptor substrates, respectively. BgaC transferred the Gal moiety to the acceptor, giving rise to LNB. The maximum yield of LNB was obtained at the acceptor: donor substrate ratio of 1:30.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroyuki Kajiura ◽  
Ryousuke Miyauchi ◽  
Akemi Kakudo ◽  
Takao Ohashi ◽  
Ryo Misaki ◽  
...  

AbstractN-Glycosylation is one of the most important post-translational protein modifications in eukaryotic cells. Although more than 200 N-glycogenes contributing to N-glycan biosynthesis have been identified and characterized, the information on insect N-glycosylation is still limited. Here, focusing on insect N-glycosylation, we characterized Bombyx mori N-acetylgalactosaminyltransferase (BmGalNAcT) participating in complex N-glycan biosynthesis in mammals. BmGalNAcT localized at the Golgi and was ubiquitously expressed in every organ and in the developmental stage of the middle silk gland of fifth instar larvae. Analysis of recombinant BmGalNAcT expressed in Sf9 cells showed that BmGalNAcT transferred GalNAc to non-reducing terminals of GlcNAcβ1,2-R with β1,4-linkage. In addition, BmGalNAcT mediated transfer of galactose and N-acetylglucosamine residues but not transfer of either glucose or glucuronic acid from the UDP-sugar donor substrate to the N-glycan. Despite this tri-functional sugar transfer activity, however, most of the endogenous glycoproteins of insect cells were present without GalNAc, Gal, or GlcNAc residues at the non-reducing terminal of β1,2-GlcNAc residue(s). Moreover, overexpression of BmGalNAcT in insect cells had no effect on N-acetylgalactosaminylation, galactosylation, or N-acetylglucosaminylation of the major N-glycan during biosynthesis. These results suggested that B. mori has a novel multifunctional glycosyltransferase, but the N-glycosylation is highly and strictly regulated by the endogenous N-glycosylation machineries.


2020 ◽  
Vol 694 ◽  
pp. 108615
Author(s):  
Mattayaus Yentongchai ◽  
Niramon Thamwiriyasati ◽  
Chompounoot Imtong ◽  
Hui-Chun Li ◽  
Chanan Angsuthanasombat

2020 ◽  
Vol 477 (15) ◽  
pp. 2791-2805
Author(s):  
Aishat Akere ◽  
Serena H. Chen ◽  
Xiaohan Liu ◽  
Yanger Chen ◽  
Sarath Chandra Dantu ◽  
...  

Glycosylation of secondary metabolites involves plant UDP-dependent glycosyltransferases (UGTs). UGTs have shown promise as catalysts in the synthesis of glycosides for medical treatment. However, limited understanding at the molecular level due to insufficient biochemical and structural information has hindered potential applications of most of these UGTs. In the absence of experimental crystal structures, we employed advanced molecular modeling and simulations in conjunction with biochemical characterization to design a workflow to study five Group H Arabidopsis thaliana (76E1, 76E2, 76E4, 76E5, 76D1) UGTs. Based on our rational structural manipulation and analysis, we identified key amino acids (P129 in 76D1; D374 in 76E2; K275 in 76E4), which when mutated improved donor substrate recognition than wildtype UGTs. Molecular dynamics simulations and deep learning analysis identified structural differences, which drive substrate preferences. The design of these UGTs with broader substrate specificity may play important role in biotechnological and industrial applications. These findings can also serve as basis to study other plant UGTs and thereby advancing UGT enzyme engineering.


2020 ◽  
Vol 251 ◽  
pp. 153210 ◽  
Author(s):  
Claire Holland ◽  
Thomas J. Simmons ◽  
Frank Meulewaeter ◽  
Andrew Hudson ◽  
Stephen C. Fry

2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Olga N. Solovjeva ◽  
Marina V. Kovina ◽  
Maria G. Zavialova ◽  
Victor G. Zgoda ◽  
Dmitrii S. Shcherbinin ◽  
...  

Abstract Transketolase catalyzes the transfer of a glycolaldehyde residue from ketose (the donor substrate) to aldose (the acceptor substrate). In the absence of aldose, transketolase catalyzes a one-substrate reaction that involves only ketose. The mechanism of this reaction is unknown. Here, we show that hydroxypyruvate serves as a substrate for the one-substrate reaction and, as well as with the xylulose-5-phosphate, the reaction product is erythrulose rather than glycolaldehyde. The amount of erythrulose released into the medium is equimolar to a double amount of the transformed substrate. This could only be the case if the glycol aldehyde formed by conversion of the first ketose molecule (the product of the first half reaction) remains bound to the enzyme, waiting for condensation with the second molecule of glycol aldehyde. Using mass spectrometry of catalytic intermediates and their subsequent fragmentation, we show here that interaction of the holotransketolase with hydroxypyruvate results in the equiprobable binding of the active glycolaldehyde to the thiazole ring of thiamine diphosphate and to the amino group of its aminopyrimidine ring. We also show that these two loci can accommodate simultaneously two glycolaldehyde molecules. It explains well their condensation without release into the medium, which we have shown earlier.


Sign in / Sign up

Export Citation Format

Share Document