scholarly journals Valley-filling instability and critical magnetic field for interaction-enhanced Zeeman response in doped WSe2 monolayers

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fengyuan Xuan ◽  
Su Ying Quek

AbstractCarrier-doped transition metal dichalcogenide (TMD) monolayers are of great interest in valleytronics due to the large Zeeman response (g-factors) in these spin-valley-locked materials, arising from many-body interactions. We develop an ab initio approach based on many-body perturbation theory to compute the interaction-enhanced g-factors in carrier-doped materials. We show that the g-factors of doped WSe2 monolayers are enhanced by screened-exchange interactions resulting from magnetic-field-induced changes in band occupancies. Our interaction-enhanced g-factors g* agree well with experiment. Unlike traditional valleytronic materials such as silicon, the enhancement in g-factor vanishes beyond a critical magnetic field Bc achievable in standard laboratories. We identify ranges of g* for which this change in g-factor at Bc leads to a valley-filling instability and Landau level alignment, which is important for the study of quantum phase transitions in doped TMDs. We further demonstrate how to tune the g-factors and optimize the valley-polarization for the valley Hall effect.

Author(s):  
Shinichi Ishiguri

To clarify the relationships among critical temperature, critical magnetic field, and critical current density, this paper describes many-body interactions of quantum magnetic fluxes (i.e., vortices) and calculates pinning-related critical current density. All calculations are analytically derived, without numerical or fitting methods. After calculating a magnetic flux quantum mass, we theoretically obtain the critical temperature in a many-body interaction scenario (which can be handled by our established method). We also derive the critical magnetic field and inherent critical current density at each critical temperature. Finally, we determine the pinning-related critical current density with self-fields. The relationships between the critical magnetic field and critical temperature, inherent critical current density and critical temperature, and pinning critical current density and self-magnetic field were consistent with experimental observations. From the critical current density and critical magnetic field, we clarified the magnetic field transition. It appears that a magnetic flux quantum collapses when the lattice of magnetic flux quanta melts. Our results, combined with our previously published papers, provide a comprehensive understanding of the transition points in high-Tc cuprates.


10.14311/1344 ◽  
2011 ◽  
Vol 51 (2) ◽  
Author(s):  
N. Ananikian ◽  
L. Ananikyan ◽  
L. Chakhmakhchyan ◽  
A. Kocharian

The equilibrium magnetic and entanglement properties in a spin-1/2 Ising-Heisenberg model on a triangulated Kagomé lattice are analyzed by means of the effective field for the Gibbs-Bogoliubov inequality. The calculation is reduced to decoupled individual (clusters) trimers due to the separable character of the Ising-type exchange interactions between the Heisenberg trimers. The concurrence in terms of the three qubit isotropic Heisenberg model in the effective Ising field in the absence of a magnetic field is non-zero. The magnetic and entanglement properties exhibit common (plateau, peak) features driven by a magnetic field and (antiferromagnetic) exchange interaction. The (quantum) entangled and non-entangled phases can be exploited as a useful tool for signalling the quantum phase transitions and crossovers at finite temperatures. The critical temperature of order-disorder coincides with the threshold temperature of thermal entanglement.


2007 ◽  
Vol 21 (08n09) ◽  
pp. 1502-1506
Author(s):  
A. M. ORTIZ DE ZEVALLOS ◽  
N. C. MAMANI ◽  
G. M. GUSEV ◽  
A. A. QUIVY ◽  
T. E. LAMAS ◽  
...  

We report on Hall effect measurements in 1000-4000 Åwide AlxGax-1As parabolic wells with quasi-two-dimensional electrons and holes in the presence of a perpendicular magnetic field. Above a critical magnetic field B > 3T, the Hall resistance is found to increase when temperature decreases. We attribute such an enhanced Hall slope to the variation of the carrier density. The Hartree and exchange-correlation terms produce a strong variation of the potential well shap: the width of the electronic and hole slabs shrinks as magnetic field increases, which in turn leads to a charge redistribution between the well and impurity layer.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


2005 ◽  
Vol 159 ◽  
pp. 241-245 ◽  
Author(s):  
Masashi Fujisawa ◽  
Budhy Kurniawan ◽  
Toshio Ono ◽  
Hidekazu Tanaka

1991 ◽  
Vol 44 (8) ◽  
pp. 4006-4009 ◽  
Author(s):  
B. B. Goldberg ◽  
D. Heiman ◽  
M. Dahl ◽  
A. Pinczuk ◽  
L. Pfeiffer ◽  
...  

2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Fumikazu Oguro ◽  
Yudai Sato ◽  
Kanta Asakawa ◽  
Masahiro Haze ◽  
Yukio Hasegawa

2021 ◽  
Vol 3 (2) ◽  
pp. 253-261
Author(s):  
Angel Ricardo Plastino ◽  
Gustavo Luis Ferri ◽  
Angelo Plastino

We employ two different Lipkin-like, exactly solvable models so as to display features of the competition between different fermion–fermion quantum interactions (at finite temperatures). One of our two interactions mimics the pairing interaction responsible for superconductivity. The other interaction is a monopole one that resembles the so-called quadrupole one, much used in nuclear physics as a residual interaction. The pairing versus monopole effects here observed afford for some interesting insights into the intricacies of the quantum many body problem, in particular with regards to so-called quantum phase transitions (strictly, level crossings).


2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document