scholarly journals Microbiologically influenced corrosion inhibition of carbon steel via biomineralization induced by Shewanella putrefaciens

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuntian Lou ◽  
Weiwei Chang ◽  
Tianyu Cui ◽  
Hongchang Qian ◽  
Luyao Huang ◽  
...  

AbstractMicrobiologically influenced corrosion inhibition (MICI) of Q235 carbon steel by biomineralization was investigated via a combination of surface analysis, electrochemistry, and scanning electrochemical microscopy (SECM). The results showed that Shewanella putrefaciens used the cell walls as the nucleation sites to induce the formation of a protective biomineralized layers which contained calcite and extracellular polymeric substances on the steel surface. The potentiodynamic polarization results demonstrated that the corrosion current density (icorr value) of the biomineralized steel surface was 0.38 μA cm−2, which was less than one-tenth that of the blank steel in a sterile medium (4.86 μA cm−2) after 14 days. The biomineralized layers presented wear resistance and could self-repair after undergoing mechanical damage under microbial conditions as verified by morphological and SECM observations. This work reveals that microbial-induced carbonate biomineralization, as a MICI approach, may be considered as a reliable, low-cost, environmentally friendly corrosion inhibition strategy.

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4200
Author(s):  
Bing Lin ◽  
Junlei Tang ◽  
Yingying Wang ◽  
Hu Wang ◽  
Yu Zuo

The synergistic corrosion inhibition effect between calcium lignosulfonate (CLS) and three kinds of inorganic inhibitors (Na2MoO4, Na2SnO3, and NaWO4) with various molar ratios on Q235 carbon steel in alkaline solution (pH 11.5) with 0.02 mol/L NaCl was investigated by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, linear polarization, scanning electron microscopy, and X-ray photoelectron spectroscopy. Molybdate and stannate in hybrid inhibitor could promote the passivation of steel and form a complex film, which could suppress the corrosion effectively. Moreover, the insoluble metal oxides in the complex film formed by three kinds of inorganic inhibitor could help the adsorption of CLS onto the steel surface. The CLS molecules could adsorb onto the steel surface and metal oxides to form an adsorption film to protect the steel from corrosion. A three-layer protection film formed by a hybrid inhibitor, including passivation film, deposition film, and adsorption film, would effectively inhibit the corrosion reactions on the steel surface. The CLS compound with molybdate with the ratio of 2:3 shows the best inhibition effect on both general corrosion and localized corrosion.


2014 ◽  
Vol 25 (1) ◽  
pp. 11-14
Author(s):  
Albana Jano ◽  
Alketa Lame ◽  
Efrosini Kokalari

Abstract The use of inhibitors is one of the most practical means for protecting metals against corrosion, especially in acidic media. The interest is to use organic compounds as inhibitors due mainly to their inherent and non-toxic nature. Amino acids are attractive as corrosion inhibitors because they are nontoxic, relatively easy to produce with high purity at low cost, and are soluble in aqueous media. Lysine, one kind of amino acid is used as inhibitor. The aims of this study are to show corrosion protection efficiency of lysine and to explain the mechanism of corrosion. The experimental results demonstrated that the lysine offered protection for low alloy carbon steel in aggressive environments like H2SO4. Materials under investigation are two types of low alloy carbon steel marked as: Steel 39, Steel 44 (usually applied to concrete as reinforcing bars). The corrosion media consists in sulfuric acid in presence of chloride ions, in form of NaCl (H2SO4 1M + Cl- 10-3M). Potentiodynamic polarization methods are used for inhibitor efficiency testing. Potentiodymanic polarization measurements showed that the presence of lysine in acidic solution decreases the corrosion current to a good extent. The corrosion inhibition efficiency improves with the increase of the lysine concentration. The use of this inhibitor (1g/L) protects steel 39 in acidic media with 78.88% efficiency. That means lysine is a good corrosion inhibitor for these aggressive conditions.


2011 ◽  
Vol 239-242 ◽  
pp. 1478-1481
Author(s):  
Jie Sun ◽  
Rui Yan ◽  
Ting Liang ◽  
Zhuang Zhou Ji ◽  
Jin Hong Meng

The corrosion process was analyzed for carbon steel when used in Ca(ClO)2hypochlorite Disinfection Solution. The corrosion resistance of Ni-P electroless coating was characterized by electrochemistry method. From the results, it was shown that the corrosion reaction can occur spontaneously according to the caculation result. The corrosion products existing on the carbon steel surface were loose and porous. The main conpositions of the products are about iron oxide. For Ni-P coatings, the corrosion current densities reduced gradually with the increasing of electroless plating time.


Author(s):  
Hamze Foratirad ◽  
Majid Golabadi ◽  
Masoud Asgari ◽  
Mohammad Ghasem Gholami ◽  
Meysam Karimi

Abstract In this study, the synergistic effects of 2-mercaptobenzotiazole molecules and zinc nitrate on the corrosion behavior of carbon steel were investigated using electrochemical techniques in 3.5% NaCl solution. The experimental results revealed that combination of 2-mercaptobenzoimidazole (MBT) and zinc nitrate with ratio of 100 ppm : 100 ppm, resulted in the least corrosion current (1.03 lA cm-2) and the highest corrosion inhibition efficiency. Polarization results showed that the inhibition mechanism of inhibitor was mixed-type (anodic and cathodic mechanism) corrosion inhibition which was predominantly influenced by a reduction in dissolution rate of the substrate (decrease in anodic current density). Electrochemical impedance spectroscopy analysis yielded more accurate results about the formation mechanism and stability of the inhibitor film over prolonged time. The precipitation of chelate from inhibitor molecules and zinc cations on steel surface was found to be the main mechanism for increasing the corrosion resistance of steel substrate.


2021 ◽  
Vol 33 (12) ◽  
pp. 3115-3122
Author(s):  
P. Vijayakumar ◽  
S. Valarselvan ◽  
S.S. Syed Abuthahir

The corrosion inhibition effect of dipropyl sulphide (DPS) on carbon steel immersed in 0.5 N sulphuric acid has been evaluated at room temperature using mass loss method. The corrosion rate and inhibition efficiency was obtained from weight loss method. The corrosion inhibition efficiency increases with increase in concentration of an inhibitor. The corrosion rate decreases when increase in concentration of inhibitor. This is due to the higher concentration of inhibitor solution, which blocks the active site of a carbon steel and a protective film is formed on the carbon steel surface. Electrochemical studies have been used to confirm the formation of protective film over the carbon steel surface. This is further confirmed by surface analysis technique like FTIR spectroscopy and scanning electron microscopy. Energy dispersive analysis of X-ray was used to analyze the elements present over the carbon steel surface. Surface analysis of polished, corroded and inhibitor carbon steel surface has been evaluated by SEM. In order to study adsorption of dipropyl sulphide on carbon steel, in situ atomic force microscopy (AFM) measurements were performed in control, with and without dipropyl sulphide in 0.5 N H2SO4 solution.


Sign in / Sign up

Export Citation Format

Share Document