scholarly journals Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anthony R. Braun ◽  
Elly E. Liao ◽  
Mian Horvath ◽  
Prakriti Kalra ◽  
Karen Acosta ◽  
...  

AbstractWe have developed a high-throughput drug discovery platform, measuring fluorescence resonance energy transfer (FRET) with fluorescent alpha-synuclein (αSN) biosensors, to detect spontaneous pre-fibrillar oligomers in living cells. Our two αSN FRET biosensors provide complementary insight into αSN oligomerization and conformation in order to improve the success of drug discovery campaigns for the treatment of Parkinson’s disease. We measure FRET by fluorescence lifetime, rather than traditional fluorescence intensity, providing a structural readout with greater resolution and precision. This facilitates identification of compounds that cause subtle but significant conformational changes in the ensemble of oligomeric states that are easily missed using intensity-based FRET. We screened a 1280-compound small-molecule library and identified 21 compounds that changed the lifetime by >5 SD. Two of these compounds have nanomolar potency in protecting SH-SY5Y cells from αSN-induced death, providing a nearly tenfold improvement over known inhibitors. We tested the efficacy of several compounds in a primary mouse neuron assay of αSN pathology (phosphorylation of mouse αSN pre-formed fibrils) and show rescue of pathology for two of them. These hits were further characterized with biophysical and biochemical assays to explore potential mechanisms of action. In vitro αSN oligomerization, single-molecule FRET, and protein-observed fluorine NMR experiments demonstrate that these compounds modulate αSN oligomers but not monomers. Subsequent aggregation assays further show that these compounds also deter or block αSN fibril assembly.

2021 ◽  
Author(s):  
Sumaer Kamboj ◽  
Chase Harms ◽  
Derek Wright ◽  
Anthony Nash ◽  
Lokender Kumar ◽  
...  

Abstract Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previously, we showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. Here we report quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is not available, we performed molecular docking of MMP1 with aSyn using ClusPro. We simulated MMP1 dynamics using different docking poses and matched the experimental and simulated interdomain dynamics to identify an appropriate pose. We used experimentally validated simulations to define conformational changes at the catalytic site and identify allosteric residues in the hemopexin domain having strong correlations with the catalytic motif residues. We defined Shannon entropy to quantify MMP1 dynamics. We performed virtual screening against a site on selected aSyn-MMP1 binding poses and showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for substrate-specific control of MMP1 activity. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.


2011 ◽  
Vol 392 (1-2) ◽  
Author(s):  
Michael Börsch

Abstract Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of FoF1-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.


2016 ◽  
Vol 21 (10) ◽  
pp. 1034-1041 ◽  
Author(s):  
Scott P. Salowe ◽  
Lei Zhang ◽  
Hratch J. Zokian ◽  
Jennifer J. Gesell ◽  
Deborah L. Zink ◽  
...  

PCSK9 plays a significant role in regulating low-density lipoprotein (LDL) cholesterol levels and has become an important drug target for treating hypercholesterolemia. Although a member of the serine protease family, PCSK9 only catalyzes a single reaction, the autocleavage of its prodomain. The maturation of the proprotein is an essential prerequisite for the secretion of PCSK9 to the extracellular space where it binds the LDL receptor and targets it for degradation. We have found that a construct of proPCSK9 where the C-terminal domain has been truncated has sufficient stability to be expressed and purified from Escherichia coli for the in vitro study of autoprocessing. Using automated Western analysis, we demonstrate that autoprocessing exhibits the anticipated first-order kinetics. A high-throughput time-resolved fluorescence resonance energy transfer assay for autocleavage has been developed using a PCSK9 monoclonal antibody that is sensitive to the conformational changes that occur upon maturation of the proprotein. Kinetic theory has been developed that describes the behavior of both reversible and irreversible inhibitors of autocleavage. The analysis of an irreversible lactone inhibitor validates the expected relationship between potency and the reaction end point. An orthogonal liquid chromatography–mass spectrometry assay has also been implemented for the confirmation of hits from the antibody-based assays.


2020 ◽  
Author(s):  
Maria Dienerowitz ◽  
Jamieson A. L. Howard ◽  
Steven D. Quinn ◽  
Frank Dienerowitz ◽  
Mark C. Leake

AbstractSingle-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap’s inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. Here we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 s with 1 ms time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 147 ◽  
Author(s):  
Fabiana Miraglia ◽  
Verdiana Valvano ◽  
Lucia Rota ◽  
Cristina Di Primio ◽  
Valentina Quercioli ◽  
...  

Endoplasmic reticulum (ER) dysfunction is important for alpha-synuclein (αS) acquired toxicity. When targeted to the ER in SH-SY5Y cells, transient or stable expression of αS resulted in the formation of compact αS-positive structures in a small subpopulation of cells, resembling αS inclusions. Thus, because of the limitations of immunofluorescence, we developed a set of αS FRET biosensors (AFBs) able to track αS conformation in cells. In native conditions, expression in i36, a stable cell line for ER αS, of intermolecular AFBs, reporters in which CFP or YFP has been fused with the C-terminal of αS (αS-CFP/αS-YFP), resulted in no Förster resonance energy transfer (FRET), whereas expression of the intramolecular AFB, a probe obtained by fusing YFP and CFP with αS N- or C- termini (YFP-αS-CFP), showed a positive FRET signal. These data confirmed that αS has a predominantly globular, monomeric conformation in native conditions. Differently, under pro-aggregating conditions, the intermolecular AFB was able to sense significantly formation of αS oligomers, when AFB was expressed in the ER rather than ubiquitously, suggesting that the ER can favor changes in αS conformation when aggregation is stimulated. These results show the potential of AFBs as a new, valuable tool to track αS conformational changes in vivo.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2020 ◽  
Author(s):  
Anirban Das ◽  
Anju Yadav ◽  
Mona Gupta ◽  
R Purushotham ◽  
Vishram L. Terse ◽  
...  

AbstractProtein folding can go wrong in vivo and in vitro, with significant consequences for the living cell and the pharmaceutical industry, respectively. Here we propose a general design principle for constructing small peptide-based protein-specific folding modifiers. We construct a ‘xenonucleus’, which is a pre-folded peptide that resembles the folding nucleus of a protein, and demonstrate its activity on the folding of ubiquitin. Using stopped-flow kinetics, NMR spectroscopy, Förster Resonance Energy transfer, single-molecule force measurements, and molecular dynamics simulations, we show that the ubiquitin xenonucleus can act as an effective decoy for the native folding nucleus. It can make the refolding faster by 33 ± 5% at 3 M GdnHCl. In principle, our approach provides a general method for constructing specific, genetically encodable, folding modifiers for any protein which has a well-defined contiguous folding nucleus.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Abhishek Mazumder ◽  
Richard H Ebright ◽  
Achillefs Kapanidis

Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RPO). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyze RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, 'bind-unwind-load-and-lock' model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.


2020 ◽  
Author(s):  
Jiaxing Chen ◽  
Sofia Zaer ◽  
Paz Drori ◽  
Joanna Zamel ◽  
Khalil Joron ◽  
...  

AbstractThe intrinsically disordered protein, α-synuclein, implicated in synaptic vesicle homeostasis and neurotransmitter release, is also associated with several neurodegenerative diseases. The different roles of α-synuclein are characterized by distinct structural states (membrane-bound, dimer, tetramer, oligomer, and fibril), which are originated from its various monomeric conformations. The pathological states, determined by the ensemble of α-synuclein monomer conformations and dynamic pathways of interconversion between dominant states, remain elusive due to their transient nature. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.


2019 ◽  
Vol 116 (17) ◽  
pp. 8350-8359 ◽  
Author(s):  
Jaba Mitra ◽  
Monika A. Makurath ◽  
Thuy T. M. Ngo ◽  
Alice Troitskaia ◽  
Yann R. Chemla ◽  
...  

G-quadruplexes (GQs) can adopt diverse structures and are functionally implicated in transcription, replication, translation, and maintenance of telomere. Their conformational diversity under physiological levels of mechanical stress, however, is poorly understood. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to measure human telomeric sequences under tension. Abrupt GQ unfolding with K+in solution occurred at as many as four discrete levels of force. Added to an ultrastable state and a gradually unfolding state, there were six mechanically distinct structures. Extreme mechanical diversity was also observed with Na+, although GQs were mechanically weaker. Our ability to detect small conformational changes at low forces enabled the determination of refolding forces of about 2 pN. Refolding was rapid and stochastically redistributed molecules to mechanically distinct states. A single guanine-to-thymine substitution mutant required much higher ion concentrations to display GQ-like unfolding and refolded via intermediates, contrary to the wild type. Contradicting an earlier proposal, truncation to three hexanucleotide repeats resulted in a single-stranded DNA-like mechanical behavior under all conditions, indicating that at least four repeats are required to form mechanically stable structures.


Sign in / Sign up

Export Citation Format

Share Document