scholarly journals A phononic interface between a superconducting quantum processor and quantum networked spin memories

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tomáš Neuman ◽  
Matt Eichenfield ◽  
Matthew E. Trusheim ◽  
Lisa Hackett ◽  
Prineha Narang ◽  
...  

AbstractWe introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom, mediated via an acoustic bus connected by piezoelectric transducers. Applied to present-day experimental parameters for superconducting circuit qubits and diamond silicon-vacancy centers in an optimized phononic cavity, we estimate quantum state transduction with fidelity exceeding 99% at a MHz-scale bandwidth. By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.

2017 ◽  
Vol 31 (27) ◽  
pp. 1750190 ◽  
Author(s):  
Hua Lu ◽  
Guo-An Yan

A quantum router can guide information from one quantum channel to another; thus, it has an increasingly important role in complex quantum networks. Here, we verify that the quantum router proposed by [L. Zhou et al., Phys. Rev. Lett 111, 103604 (2013)] achieves quantum-state high fidelity. When the transition strengths match [Formula: see text], the fidelity of the atom decreases from the maximum value after a period of time and then rises to a maximum value of 1; if the transition strengths do not match, the fidelity will not be able to reach 1.


2021 ◽  
Author(s):  
Yuan Lee ◽  
Eric Bersin ◽  
Wenhan Dai ◽  
Dirk Englund

2017 ◽  
Vol 95 (5) ◽  
pp. 498-503
Author(s):  
Syed Tahir Amin ◽  
Aeysha Khalique

We present our model to teleport an unknown quantum state using entanglement between two distant parties. Our model takes into account experimental limitations due to contribution of multi-photon pair production of parametric down conversion source, inefficiency, dark counts of detectors, and channel losses. We use a linear optics setup for quantum teleportation of an unknown quantum state by the sender performing a Bell state measurement. Our theory successfully provides a model for experimentalists to optimize the fidelity by adjusting the experimental parameters. We apply our model to a recent experiment on quantum teleportation and the results obtained by our model are in good agreement with the experimental results.


2001 ◽  
Vol 1 (Special) ◽  
pp. 7-12
Author(s):  
H. Mabuchi ◽  
M. Armen ◽  
B. Lev ◽  
M. Loncar ◽  
J. Vuckovic ◽  
...  

We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.


Author(s):  
Chuangtao Chen ◽  
Zhimin He ◽  
Zhiming Huang ◽  
Haozhen Situ

Quantum state tomography (QST) is an important and challenging task in the field of quantum information, which has attracted a lot of attentions in recent years. Machine learning models can provide a classical representation of the quantum state after trained on the measurement outcomes, which are part of effective techniques to solve QST problem. In this work, we use a variational autoencoder (VAE) to learn the measurement distribution of two quantum states generated by MPS circuits. We first consider the Greenberger–Horne–Zeilinger (GHZ) state which can be generated by a simple MPS circuit. Simulation results show that a VAE can reconstruct 3- to 8-qubit GHZ states with a high fidelity, i.e., 0.99, and is robust to depolarizing noise. The minimum number ([Formula: see text]) of training samples required to reconstruct the GHZ state up to 0.99 fidelity scales approximately linearly with the number of qubits ([Formula: see text]). However, for the quantum state generated by a complex MPS circuit, [Formula: see text] increases exponentially with [Formula: see text], especially for the quantum state with high entanglement entropy.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 325 ◽  
Author(s):  
Nicolas Gisin

Twenty-five years after the invention of quantum teleportation, the concept of entanglement gained enormous popularity. This is especially nice to those who remember that entanglement was not even taught at universities until the 1990s. Today, entanglement is often presented as a resource, the resource of quantum information science and technology. However, entanglement is exploited twice in quantum teleportation. Firstly, entanglement is the “quantum teleportation channel”, i.e., entanglement between distant systems. Second, entanglement appears in the eigenvectors of the joint measurement that Alice, the sender, has to perform jointly on the quantum state to be teleported and her half of the “quantum teleportation channel”, i.e., entanglement enabling entirely new kinds of quantum measurements. I emphasize how poorly this second kind of entanglement is understood. In particular, I use quantum networks in which each party connected to several nodes performs a joint measurement to illustrate that the quantumness of such joint measurements remains elusive, escaping today’s available tools to detect and quantify it.


Author(s):  
Yuan Lee ◽  
Eric Bersin ◽  
Axel Dahlberg ◽  
Stephanie Wehner ◽  
Dirk Englund

Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 592-595
Author(s):  
Songtao Chen ◽  
Mouktik Raha ◽  
Christopher M. Phenicie ◽  
Salim Ourari ◽  
Jeff D. Thompson

Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.


Sign in / Sign up

Export Citation Format

Share Document