scholarly journals Self-testing quantum systems of arbitrary local dimension with minimal number of measurements

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shubhayan Sarkar ◽  
Debashis Saha ◽  
Jędrzej Kaniewski ◽  
Remigiusz Augusiak

AbstractBell nonlocality as a resource for device-independent certification schemes has been studied extensively in recent years. The strongest form of device-independent certification is referred to as self-testing, which given a device, certifies the promised quantum state as well as quantum measurements performed on it without any knowledge of the internal workings of the device. In spite of various results on self-testing protocols, it remains a highly nontrivial problem to propose a certification scheme of qudit–qudit entangled states based on violation of a single d-outcome Bell inequality. Here we address this problem and propose a self-testing protocol for the maximally entangled state of any local dimension using the minimum number of measurements possible, i.e., two per subsystem. Our self-testing result can be used to establish unbounded randomness expansion, $${{{\mathrm{log}}}\,}_{2}d$$ log 2 d perfect random bits, while it requires only one random bit to encode the measurement choice.

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 198 ◽  
Author(s):  
Jędrzej Kaniewski ◽  
Ivan Šupić ◽  
Jordi Tura ◽  
Flavio Baccari ◽  
Alexia Salavrakos ◽  
...  

Bell inequalities are an important tool in device-independent quantum information processing because their violation can serve as a certificate of relevant quantum properties. Probably the best known example of a Bell inequality is due to Clauser, Horne, Shimony and Holt (CHSH), which is defined in the simplest scenario involving two dichotomic measurements and whose all key properties are well understood. There have been many attempts to generalise the CHSH Bell inequality to higher-dimensional quantum systems, however, for most of them the maximal quantum violation---the key quantity for most device-independent applications---remains unknown. On the other hand, the constructions for which the maximal quantum violation can be computed, do not preserve the natural property of the CHSH inequality, namely, that the maximal quantum violation is achieved by the maximally entangled state and measurements corresponding to mutually unbiased bases. In this work we propose a novel family of Bell inequalities which exhibit precisely these properties, and whose maximal quantum violation can be computed analytically. In the simplest scenario it recovers the CHSH Bell inequality. These inequalities involve d measurements settings, each having d outcomes for an arbitrary prime number d≥3. We then show that in the three-outcome case our Bell inequality can be used to self-test the maximally entangled state of two-qutrits and three mutually unbiased bases at each site. Yet, we demonstrate that in the case of more outcomes, their maximal violation does not allow for self-testing in the standard sense, which motivates the definition of a new weak form of self-testing. The ability to certify high-dimensional MUBs makes these inequalities attractive from the device-independent cryptography point of view.


Quantum ◽  
2022 ◽  
Vol 6 ◽  
pp. 614
Author(s):  
Honghao Fu

Let p be an odd prime and let r be the smallest generator of the multiplicative group Zp∗. We show that there exists a correlation of size Θ(r2) that self-tests a maximally entangled state of local dimension p−1. The construction of the correlation uses the embedding procedure proposed by Slofstra (Forum of Mathematics, Pi. (2019)). Since there are infinitely many prime numbers whose smallest multiplicative generator is in the set {2,3,5} (D.R. Heath-Brown The Quarterly Journal of Mathematics (1986) and M. Murty The Mathematical Intelligencer (1988)), our result implies that constant-sized correlations are sufficient for self-testing of maximally entangled states with unbounded local dimension.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 552
Author(s):  
Shin-Liang Chen ◽  
Huan-Yu Ku ◽  
Wenbin Zhou ◽  
Jordi Tura ◽  
Yueh-Nan Chen

Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party contains a pair of anti-commuting qubit observables. As a consequence, the other party automatically verifies the set of states remotely steered, namely the "assemblage", is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, or if one does not care about self-testing the state or measurements, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called "robust self-testing of steerable quantum assemblages". In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled two-qubit states proposed by Bowles et al., and 2) that it can be used to verify all non-entanglement-breaking qubit channels with fewer assumptions compared with the work of Rosset et al.


2003 ◽  
Vol 3 (2) ◽  
pp. 157-164
Author(s):  
H. Bechmann-Pasquinucci ◽  
N. Gisin

We present a generalized Bell inequality for two entangled quNits. On one quNit the choice is between two standard von Neumann measurements, whereas for the other quNit there are N^2 different binary measurements. These binary measurements are related to the intermediate states known from eavesdropping in quantum cryptography. The maximum violation by \sqrt{N} is reached for the maximally entangled state. Moreover, for N=2 it coincides with the familiar CHSH-inequality.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 683 ◽  
Author(s):  
Ying Yang ◽  
Huaixin Cao

Einstein-Podolsky-Rosen (EPR) steering is very important quantum correlation of a composite quantum system. It is an intermediate type of nonlocal correlation between entanglement and Bell nonlocality. In this paper, based on introducing definitions and characterizations of EPR steering, some EPR steering inequalities are derived. With these inequalities, the steerability of the maximally entangled state is checked and some conditions for the steerability of the X -states are obtained.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 418
Author(s):  
Ivan Šupić ◽  
Daniel Cavalcanti ◽  
Joseph Bowles

Self-testing protocols are methods to determine the presence of shared entangled states in a device independent scenario, where no assumptions on the measurements involved in the protocol are made. A particular type of self-testing protocol, called parallel self-testing, can certify the presence of copies of a state, however such protocols typically suffer from the problem of requiring a number of measurements that increases with respect to the number of copies one aims to certify. Here we propose a procedure to transform single-copy self-testing protocols into a procedure that certifies the tensor product of an arbitrary number of (not necessarily equal) quantum states, without increasing the number of parties or measurement choices. Moreover, we prove that self-testing protocols that certify a state and rank-one measurements can always be parallelized to certify many copies of the state. Our results suggest a method to achieve device-independent unbounded randomness expansion with high-dimensional quantum states.


2014 ◽  
Vol 12 (06) ◽  
pp. 1450040
Author(s):  
Xu Chen ◽  
Hong-Yi Su ◽  
Zhen-Peng Xu ◽  
Yu-Chun Wu ◽  
Jing-Ling Chen

Homogenization proposed in [Y.-C Wu and M. Żukowski, Phys. Rev. A 85 (2012) 022119] is a procedure to transform a tight Bell inequality with partial correlations into a full-correlation form that is also tight. In this paper, we check the homogenizations of two families of n-partite Bell inequalities: the Hardy inequality and the tight Bell inequality without quantum violation. For Hardy's inequalities, their homogenizations bear stronger quantum violation for the maximally entangled state; the tight Bell inequalities without quantum violation give the boundary of quantum and supra-quantum, but their homogenizations do not have the similar properties. We find their homogenization are violated by the maximally entangled state. Numerically computation shows the the domains of quantum violation of homogenized Hardy's inequalities for the generalized GHZ states are smaller than those of Hardy's inequalities.


2004 ◽  
Vol 02 (01) ◽  
pp. 23-31 ◽  
Author(s):  
ANTONIO ACÍN ◽  
NICOLAS GISIN ◽  
LLUIS MASANES ◽  
VALERIO SCARANI

We review the status of Bell's inequalities in quantum information, stressing mainly the links with quantum key distribution and distillation of entanglement. We also prove that for all the eavesdropping attacks using one qubit, and for a family of attacks of two qubits, acting on half of a maximally entangled state of two qubits, the violation of a Bell inequality implies the possibility of an efficient secret-key extraction.


Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dong-Gil Im ◽  
Chung-Hyun Lee ◽  
Yosep Kim ◽  
Hyunchul Nha ◽  
M. S. Kim ◽  
...  

AbstractQuantum teleportation exemplifies how the transmission of quantum information starkly differs from that of classical information and serves as a key protocol for quantum communication and quantum computing. While an ideal teleportation protocol requires noiseless quantum channels to share a pure maximally entangled state, the reality is that shared entanglement is often severely degraded due to various decoherence mechanisms. Although the quantum noise induced by the decoherence is indeed a major obstacle to realizing a near-term quantum network or processor with a limited number of qubits, the methodologies considered thus far to address this issue are resource-intensive. Here, we demonstrate a protocol that allows optimal quantum teleportation via noisy quantum channels without additional qubit resources. By analyzing teleportation in the framework of generalized quantum measurement, we optimize the teleportation protocol for noisy quantum channels. In particular, we experimentally demonstrate that our protocol enables to teleport an unknown qubit even via a single copy of an entangled state under strong decoherence that would otherwise preclude any quantum operation. Our work provides a useful methodology for practically coping with decoherence with a limited number of qubits and paves the way for realizing noisy intermediate-scale quantum computing and quantum communication.


Sign in / Sign up

Export Citation Format

Share Document