scholarly journals Trajectories of performance change indicate multiple dissociable links between working memory and fluid intelligence

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Aaron Cochrane ◽  
C. Shawn Green

AbstractMany areas of psychology assume that performance on tasks of interest is stable through time. Here, using time-sensitive modeling of working memory task performance, we show not only was this assumption incorrect, but that certain components of the performance trajectory (e.g., final task performance; rate of change) were independently predictive of fluid intelligence. This fact has clear implications for theoretical frameworks linking working memory and fluid intelligence, and beyond.

2021 ◽  
Vol 11 (7) ◽  
pp. 935
Author(s):  
Ying Xing Feng ◽  
Masashi Kiguchi ◽  
Wei Chun Ung ◽  
Sarat Chandra Dass ◽  
Ahmad Fadzil Mohd Hani ◽  
...  

The effect of stress on task performance is complex, too much or too little stress negatively affects performance and there exists an optimal level of stress to drive optimal performance. Task difficulty and external affective factors are distinct stressors that impact cognitive performance. Neuroimaging studies showed that mood affects working memory performance and the correlates are changes in haemodynamic activity in the prefrontal cortex (PFC). We investigate the interactive effects of affective states and working memory load (WML) on working memory task performance and haemodynamic activity using functional near-infrared spectroscopy (fNIRS) neuroimaging on the PFC of healthy participants. We seek to understand if haemodynamic responses could tell apart workload-related stress from situational stress arising from external affective distraction. We found that the haemodynamic changes towards affective stressor- and workload-related stress were more dominant in the medial and lateral PFC, respectively. Our study reveals distinct affective state-dependent modulations of haemodynamic activity with increasing WML in n-back tasks, which correlate with decreasing performance. The influence of a negative effect on performance is greater at higher WML, and haemodynamic activity showed evident changes in temporal, and both spatial and strength of activation differently with WML.


2014 ◽  
Vol 28 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Urs Maurer ◽  
Silvia Brem ◽  
Martina Liechti ◽  
Stefano Maurizio ◽  
Lars Michels ◽  
...  

2021 ◽  
Author(s):  
Aleš Oblak ◽  
Anka Slana Ozimič ◽  
Grega Repovš ◽  
Urban Kordeš

In experimental cognitive psychology, objects of inquiry have typically been operationalized with psychological tasks. If we are interested in measuring the target phenomena, we must inquire into the validity of the task; that is, to what extent does the task elicit the phenomenon in question. If we subscribe to the second view, evaluating the validity and the interpretation of the gathered data can be supplemented by understanding the experience of solving psychological tasks. The aim of the present article is to investigate how individuals experience performing a psychological task, specifically, a visuo-spatial working memory task. We present ethnographic descriptions of different ways individuals can experience the same task. We focus on aspects of experience that comprise the overall sense of experience (e.g., bodily feelings, emotional atmosphere, mood). We discuss the methodological implications of our findings and the possibility of conducting a neurophenomenology of visuo-spatial working memory.


2021 ◽  
Author(s):  
Jefferson Ortega ◽  
Chelsea Reichert Plaska ◽  
Bernard A Gomes ◽  
Timothy M Ellmore

Spontaneous eye blink rate (sEBR) has been found to be a non-invasive indirect measure of striatal dopamine activity. Dopamine (DA) neurons project to the prefrontal cortex (PFC) through the mesocortical dopamine pathway and their activity is implicated in a range of cognitive functions, including attention and working memory (WM). The goal of the present study was to understand how fluctuations in sEBR during different phases of a working memory task relate to task performance. Across two experiments, with recordings of sEBR inside and outside of a magnetic resonance imaging bore, we observed sEBR to be positively correlated with WM performance during the WM delay period. Additionally we investigated the non-linear relationship between sEBR and WM performance, and modeled a proposed Inverted-U-shape relationship between DA and WM performance. We also investigated blink duration, which is proposed to be related to sustained attention, and found blink duration to be significantly shorter during the encoding and probe periods of the task. Taken together, these results provide support towards sEBR as an important correlate of working memory task performance. The relationship of sEBR to DA activity and the influence of DA on the PFC during WM maintenance is discussed.


2016 ◽  
Vol 371 (1708) ◽  
pp. 20160005 ◽  
Author(s):  
Satoshi Umeda ◽  
Saiko Tochizawa ◽  
Midori Shibata ◽  
Yuri Terasawa

Previous studies on prospective memory (PM), defined as memory for future intentions, suggest that psychological stress enhances successful PM retrieval. However, the mechanisms underlying this notion remain poorly understood. We hypothesized that PM retrieval is achieved through interaction with autonomic nervous activity, which is mediated by the individual accuracy of interoceptive awareness, as measured by the heartbeat detection task. In this study, the relationship between cardiac reactivity and retrieval of delayed intentions was evaluated using the event-based PM task. Participants were required to detect PM target letters while engaged in an ongoing 2-back working memory task. The results demonstrated that individuals with higher PM task performance had a greater increase in heart rate on PM target presentation. Also, higher interoceptive perceivers showed better PM task performance. This pattern was not observed for working memory task performance. These findings suggest that cardiac afferent signals enhance PM retrieval, which is mediated by individual levels of interoceptive accuracy. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.


2019 ◽  
Vol 287 ◽  
pp. 10-18 ◽  
Author(s):  
Sripriya Chari ◽  
Michael J. Minzenberg ◽  
Marjorie Solomon ◽  
J. Daniel Ragland ◽  
Quynh Nguyen ◽  
...  

2018 ◽  
Vol 71 (4) ◽  
pp. 879-891 ◽  
Author(s):  
Stephen C Van Hedger ◽  
Shannon LM Heald ◽  
Howard C Nusbaum

Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.


Sign in / Sign up

Export Citation Format

Share Document