Energy insecurity during temperature extremes in remote Australia

Nature Energy ◽  
2021 ◽  
Author(s):  
Thomas Longden ◽  
Simon Quilty ◽  
Brad Riley ◽  
Lee V. White ◽  
Michael Klerck ◽  
...  
Keyword(s):  
2015 ◽  
Author(s):  
Thomas C. Blakeman ◽  
Jr Rodriquez ◽  
Britton Dario ◽  
Johannigman Tyler J. ◽  
Petro Jay A. ◽  
...  
Keyword(s):  

Author(s):  
Ann M. Krake

This chapter covers extremes of temperature conditions, physiological effects, and prevention. All deaths caused by exposure to hot and cold temperature extremes are preventable when proper measures are taken. Described in this chapter are the effects of extreme heat and extreme cold on the health of members of the public, particularly older people and young people, and workers employed in various workplace settings. The differences between heat stress and heat strain are also discussed, as are various regulations governing exposure to temperature extremes. The nature and magnitude of heat- and cold-related conditions and symptoms are described in detail. Final sections of the chapter address various assessment and evaluation tools as well as prevention and control measures. In addition, an appendix describes the hazards related to hyperbaric and hypobaric environments and adverse health effects.


2021 ◽  
Author(s):  
Ross Slater ◽  
Nicolas Freychet ◽  
Gabriele Hegerl
Keyword(s):  

2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Simeng Wang ◽  
Qihang Liu ◽  
Chang Huang

Changes in climate extremes have a profound impact on vegetation growth. In this study, we employed the Moderate Resolution Imaging Spectroradiometer (MODIS) and a recently published climate extremes dataset (HadEX3) to study the temporal and spatial evolution of vegetation cover, and its responses to climate extremes in the arid region of northwest China (ARNC). Mann-Kendall test, Anomaly analysis, Pearson correlation analysis, Time lag cross-correlation method, and Least absolute shrinkage and selection operator logistic regression (Lasso) were conducted to quantitatively analyze the response characteristics between Normalized Difference Vegetation Index (NDVI) and climate extremes from 2000 to 2018. The results showed that: (1) The vegetation in the ARNC had a fluctuating upward trend, with vegetation significantly increasing in Xinjiang Tianshan, Altai Mountain, and Tarim Basin, and decreasing in the central inland desert. (2) Temperature extremes showed an increasing trend, with extremely high-temperature events increasing and extremely low-temperature events decreasing. Precipitation extremes events also exhibited a slightly increasing trend. (3) NDVI was overall positively correlated with the climate extremes indices (CEIs), although both positive and negative correlations spatially coexisted. (4) The responses of NDVI and climate extremes showed time lag effects and spatial differences in the growing period. (5) Precipitation extremes were closely related to NDVI than temperature extremes according to Lasso modeling results. This study provides a reference for understanding vegetation variations and their response to climate extremes in arid regions.


2017 ◽  
Vol 24 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Yao Zhang ◽  
Guohe Huang ◽  
Xiuquan Wang ◽  
Zhengping Liu
Keyword(s):  

Author(s):  
Konstantinos-Georgios Glynis ◽  
Theano Iliopoulou ◽  
Panayiotis Dimitriadis ◽  
Demetris Koutsoyiannis

Author(s):  
Mariya Bezgrebelna ◽  
Kwame McKenzie ◽  
Samantha Wells ◽  
Arun Ravindran ◽  
Michael Kral ◽  
...  

This systematic review of reviews was conducted to examine housing precarity and homelessness in relation to climate change and weather extremes internationally. In a thematic analysis of 15 reviews (5 systematic and 10 non-systematic), the following themes emerged: risk factors for homelessness/housing precarity, temperature extremes, health concerns, structural factors, natural disasters, and housing. First, an increased risk of homelessness has been found for people who are vulnerably housed and populations in lower socio-economic positions due to energy insecurity and climate change-induced natural hazards. Second, homeless/vulnerably-housed populations are disproportionately exposed to climatic events (temperature extremes and natural disasters). Third, the physical and mental health of homeless/vulnerably-housed populations is projected to be impacted by weather extremes and climate change. Fourth, while green infrastructure may have positive effects for homeless/vulnerably-housed populations, housing remains a major concern in urban environments. Finally, structural changes must be implemented. Recommendations for addressing the impact of climate change on homelessness and housing precarity were generated, including interventions focusing on homelessness/housing precarity and reducing the effects of weather extremes, improved housing and urban planning, and further research on homelessness/housing precarity and climate change. To further enhance the impact of these initiatives, we suggest employing the Human Rights-Based Approach (HRBA).


Sign in / Sign up

Export Citation Format

Share Document