Author Correction: Structural basis of sphingosine-1-phosphate receptor 1 activation and biased agonism

Author(s):  
Zhenmei Xu ◽  
Tatsuya Ikuta ◽  
Kouki Kawakami ◽  
Ryoji Kise ◽  
Yu Qian ◽  
...  
Author(s):  
Zhenmei Xu ◽  
Tatsuya Ikuta ◽  
Kouki Kawakami ◽  
Ryoji Kise ◽  
Yu Qian ◽  
...  

2014 ◽  
Vol 19 (7) ◽  
pp. 1079-1089 ◽  
Author(s):  
Yingjie Zhu ◽  
John Watson ◽  
Mengjie Chen ◽  
Ding Ren Shen ◽  
Melissa Yarde ◽  
...  

G protein–coupled receptors (GPCRs) are one of the most popular and proven target classes for therapeutic intervention. The increased appreciation for allosteric modulation, receptor oligomerization, and biased agonism has led to the development of new assay platforms that seek to capitalize on these aspects of GPCR biology. High-content screening is particularly well suited for GPCR drug discovery given the ability to image and quantify changes in multiple cellular parameters, to resolve subcellular structures, and to monitor events within a physiologically relevant environment. Focusing on the sphingosine-1-phosphate (S1P1) receptor, we evaluated the utility of high-content approaches in hit identification efforts by developing and applying assays to monitor β-arrestin translocation, GPCR internalization, and GPCR recycling kinetics. Using these approaches in combination with more traditional GPCR screening assays, we identified compounds whose unique pharmacological profiles would have gone unnoticed if using a single platform. In addition, we identified a compound that induces an atypical pattern of β-arrestin translocation and GPCR recycling kinetics. Our results highlight the value of high-content imaging in GPCR drug discovery efforts and emphasize the value of a multiassay approach to study pharmacological properties of compounds of interest.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Gabor Tigyi ◽  
William Valentine ◽  
Daniel Osborne ◽  
Yuko Fujiwara ◽  
Jianxiong Liu ◽  
...  

2022 ◽  
Author(s):  
Leiye Yu ◽  
Licong He ◽  
Bing Gan ◽  
Rujuan Ti ◽  
Qingjie Xiao ◽  
...  

As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1-5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or non-lipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its non-redundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here we reported four atomic resolution cryo-EM structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod ((S)-FTY720-P), or non-lipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1P receptors.


2005 ◽  
Vol 389 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Yuichi INAGAKI ◽  
TrucChi T. PHAM ◽  
Yuko FUJIWARA ◽  
Takayuki KOHNO ◽  
Daniel A. OSBORNE ◽  
...  

Synergistic computational and experimental studies provided previously unforeseen details concerning the structural basis of S1P (sphingosine 1-phosphate) recognition by the S1P4 G-protein-coupled receptor. Similarly to reports on the S1P1 receptor, cationic and anionic residues in the third transmembrane domain (R3.28 and E3.29 at positions 124 and 125) form ion pairs with the phosphate and ammonium of S1P, and alanine mutations at these positions abolished specific S1P binding, S1P-induced receptor activation and cell migration. Unlike findings on the S1P1 receptor, no cationic residue in the seventh transmembrane domain interacts with the phosphate. Additionally, two previously undiscovered interactions with the S1P polar headgroup have been identified. Trp186 at position 4.64 in the fourth transmembrane domain interacts by a cation-π interaction with the ammonium group of S1P. Lys204 at position 5.38 forms an ion pair with the S1P. The S1P4 and S1P1 receptors show differences in binding-pocket shape and electrostatic distributions that correlate with the published structure–activity relationships. In particular, the binding pocket of mS1P4 (mouse S1P4) has recognition sites for the anionic phosphate and cationic ammonium groups that are equidistant from the end of the non-polar tail. In contrast, the binding pocket of hS1P1 (human S1P4) places the ammonium recognition site 2 Å (1 Å=0.1 nm) closer to the end of the non-polar tail than the phosphate recognition site.


2021 ◽  
Vol 7 (24) ◽  
pp. eabf5325
Author(s):  
Shintaro Maeda ◽  
Yuki Shiimura ◽  
Hidetsugu Asada ◽  
Kunio Hirata ◽  
Fangjia Luo ◽  
...  

Sphingosine-1-phosphate (S1P) regulates numerous important physiological functions, including immune response and vascular integrity, via its cognate receptors (S1PR1 to S1PR5); however, it remains unclear how S1P activates S1PRs upon binding. Here, we determined the crystal structure of the active human S1PR3 in complex with its natural agonist S1P at 3.2-Å resolution. S1P exhibits an unbent conformation in the long tunnel, which penetrates through the receptor obliquely. Compared with the inactive S1PR1 structure, four residues surrounding the alkyl tail of S1P (the “quartet core”) exhibit orchestrating rotamer changes that accommodate the moiety, thereby inducing an active conformation. In addition, we reveal that the quartet core determines G protein selectivity of S1PR3. These results offer insight into the structural basis of activation and biased signaling in G protein–coupled receptors and will help the design of biased ligands for optimized therapeutics.


Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


Author(s):  
J. Jakana ◽  
M.F. Schmid ◽  
P. Matsudaira ◽  
W. Chiu

Actin is a protein found in all eukaryotic cells. In its polymerized form, the cells use it for motility, cytokinesis and for cytoskeletal support. An example of this latter class is the actin bundle in the acrosomal process from the Limulus sperm. The different functions actin performs seem to arise from its interaction with the actin binding proteins. A 3-dimensional structure of this macromolecular assembly is essential to provide a structural basis for understanding this interaction in relationship to its development and functions.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


Sign in / Sign up

Export Citation Format

Share Document