Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation

2017 ◽  
Vol 56 (02) ◽  
pp. 95-111 ◽  
Author(s):  
Tihomir V. Ilić ◽  
Slađan Milanović ◽  
Veljko Potkonjak ◽  
Aleksandar Rodić ◽  
José Santos-Victor ◽  
...  

SummaryBackground: Traditional rehabilitation sessions are often a slow, tedious, disempowering and non-motivational process, supported by clinical assessment tools, i.e. evaluation scales that are prone to subjective rating and imprecise interpretation of patient’s performance. Poor patient motivation and insufficient accuracy are thus critical factors that can be improved by new sensing/processing technologies.Objectives: We aim to develop a portable and affordable system, suitable for home rehabilitation, which combines vision-based and wearable sensors. We introduce a novel approach for examining and characterizing the rehabilitation movements, using quantitative descriptors. We propose new Movement Performance Indicators (MPIs) that are extracted directly from sensor data and quantify the symmetry, velocity, and acceleration of the movement of different body/hand parts, and that can potentially be used by therapists for diagnosis and progress assessment.Methods: First, a set of rehabilitation exercises is defined, with the supervision of neurologists and therapists for the specific case of Parkinson’s disease. It comprises full-body movements measured with a Kinect device and fine hand movements, acquired with a data glove. Then, the sensor data is used to compute 25 Movement Performance Indicators, to assist the diagnosis and progress monitoring (assessing the disease stage) in Parkinson’s disease. A kinematic hand model is developed for data verification and as an additional resource for extracting supplementary movement information.Results: Our results show that the proposed Movement Performance Indicators are relevant for the Parkinson’s disease assessment. This is further confirmed by correlation of the proposed indicators with clinical tapping test and UPDRS clinical scale. Classification results showed the potential of these indicators to discriminate between the patients and controls, as well as between the stages that characterize the evolution of the disease.Conclusions: The proposed sensor system, along with the developed approach for rehabilitation movement analysis have a significant potential to support and advance traditional rehabilitation therapy. The main impact of our work is two-fold: (i) the proposition of an approach for supporting the therapists during the diagnosis and monitoring evaluations by reducing subjectivity and imprecision, and (ii) offering the possibility of the system to be used at home for rehabilitation exercises in between sessions with doctors and therapists.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Margot Heijmans ◽  
Jeroen G. V. Habets ◽  
Christian Herff ◽  
Jos Aarts ◽  
An Stevens ◽  
...  

Abstract Parkinson’s disease symptoms are most often charted using the MDS-UPDRS. Limitations of this approach include the subjective character of the assessments and a discrepant performance in the clinic compared to the home situation. Continuous monitoring using wearable devices is believed to eventually replace this golden standard, but measurements often lack a parallel ground truth or are only tested in lab settings. To overcome these limitations, this study explores the feasibility of a newly developed Parkinson’s disease monitoring system, which aims to measure Parkinson’s disease symptoms during daily life by combining wearable sensors with an experience sampling method application. Twenty patients with idiopathic Parkinson’s disease participated in this study. During a period of two consecutive weeks, participants had to wear three wearable sensors and had to complete questionnaires at seven semi-random moments per day on their mobile phone. Wearable sensors collected objective movement data, and the questionnaires containing questions about amongst others Parkinson’s disease symptoms served as parallel ground truth. Results showed that participants wore the wearable sensors during 94% of the instructed timeframe and even beyond. Furthermore, questionnaire completion rates were high (79,1%) and participants evaluated the monitoring system positively. A preliminary analysis showed that sensor data could reliably predict subjectively reported OFF moments. These results show that our Parkinson’s disease monitoring system is a feasible method to use in a diverse Parkinson’s disease population for at least a period of two weeks. For longer use, the monitoring system may be too intense and wearing comfort needs to be optimized.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 54
Author(s):  
Barry R. Greene ◽  
Isabella Premoli ◽  
Killian McManus ◽  
Denise McGrath ◽  
Brian Caulfield

People with Parkinson’s disease (PD) experience significant impairments to gait and balance; as a result, the rate of falls in people with Parkinson’s disease is much greater than that of the general population. Falls can have a catastrophic impact on quality of life, often resulting in serious injury and even death. The number (or rate) of falls is often used as a primary outcome in clinical trials on PD. However, falls data can be unreliable, expensive and time-consuming to collect. We sought to validate and test a novel digital biomarker for PD that uses wearable sensor data obtained during the Timed Up and Go (TUG) test to predict the number of falls that will be experienced by a person with PD. Three datasets, containing a total of 1057 (671 female) participants, including 71 previously diagnosed with PD, were included in the analysis. Two statistical approaches were considered in predicting falls counts: the first based on a previously reported falls risk assessment algorithm, and the second based on elastic net and ensemble regression models. A predictive model for falls counts in PD showed a mean R2 value of 0.43, mean error of 0.42 and a mean correlation of 30% when the results were averaged across two independent sets of PD data. The results also suggest a strong association between falls counts and a previously reported inertial sensor-based falls risk estimate. In addition, significant associations were observed between falls counts and a number of individual gait and mobility parameters. Our preliminary research suggests that the falls counts predicted from the inertial sensor data obtained during a simple walking task have the potential to be developed as a novel digital biomarker for PD, and this deserves further validation in the targeted clinical population.


2020 ◽  
Vol 13 (5) ◽  
pp. 508-523 ◽  
Author(s):  
Guan‐Hua Huang ◽  
Chih‐Hsuan Lin ◽  
Yu‐Ren Cai ◽  
Tai‐Been Chen ◽  
Shih‐Yen Hsu ◽  
...  

Author(s):  
F. Sartucci ◽  
T. Bocci ◽  
M. Santin ◽  
P. Bongioanni ◽  
G. Orlandi

Abstract Background and rationale Histopathological studies revealed degeneration of the dorsal motor nucleus of the vagus nerve (VN) early in the course of idiopathic Parkinson’s disease (IPD). Degeneration of VN axons should be detectable by high-resolution ultrasound (HRUS) as a thinning of the nerve trunk. In order to establish if the VN exhibits sonographic signs of atrophy in IPD, we examined patients with IPD compared with age-matched controls. Material and methods We measured the caliber (cross-sectional area, CSA) and perimeter of the VN in 20 outpatients with IPD (8 females and 12 males; mean age 73.0 + 8.6 years) and in age-matched controls using HRUS. Evaluation was performed by blinded raters using an Esaote MyLab Gamma device in conventional B-Mode with an 8–19 MHz probe. Results In both sides, the VN CSA was significantly smaller in IPD outpatients than in controls (right 2.37 + 0.91, left 1.87 + 1.35 mm2 versus 6.0 + 1.33, 5.6 + 1.26 mm2; p <0.001), as well as the perimeter (right 5.06 + 0.85, left 4.78 + 1.74 mm versus 8.87 + 0.86, 8.58 + 0.97 mm; p <0.001). There were no significant correlations between VN CSA and age, the Hoehn and Yahr scale, L-dopa therapy, and disease duration. Conclusion Our findings provide evidence of atrophy of the VNs in IPD patients by HRUS. Moreover, HRUS of the VN represent a non-invasive easy imaging modality of screening in IPD patients independent of disease stage and duration and an interesting possible additional index of disease.


2016 ◽  
Vol 10 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Alice Estevo Dias ◽  
João Carlos Papaterra Limongi ◽  
Wu Tu Hsing ◽  
Egberto Reis Barbosa

ABSTRACT Background: The need for efficacy in voice rehabilitation in patients with Parkinson's disease is well established. Given difficulties traveling from home to treatment centers, the use of telerehabilitation may represent an invaluable tool for many patients. Objective: To analyze the influence of cognitive performance on acceptance of telerehabilitation. Methods: Fifty patients at stages 2-4 on the Hoehn-Yahr scale, aged 45-87 years old, with cognitive scores of19-30 on the Mini-Mental State Examination, and 4-17 years of education were enrolled. All patients were submitted to evaluation of voice intensity pre and post in-person treatment with the Lee Silverman Voice Treatment (LSVT) and were asked to fill out a questionnaire regarding their preferences between two options of treatment and evaluating basic technological competence. Results: Comparisons between pre and post-treatment values showed a mean increase of 14dBSPL in vocal intensity. When asked about potential acceptance to participate in future telerehabilitation, 38 subjects agreed to take part and 12 did not. For these two groups, 26% and 17% self-reported technological competence, respectively. Agreement to engage in remote therapy was positively associated with years of education and cognitive status. Conclusion: Responses to the questionnaire submitted after completion of traditional in-person LSVT showed that the majority of patients (76%) were willing to participate in future telerehabilitation. Age, gender, disease stage and self-reported basic technological skills appeared to have no influence on the decision, whereas other factors such as cognitive status and higher school education were positively associated with acceptance of the new therapy approach.


2021 ◽  
Author(s):  
Jeremy Watts ◽  
Anahita Khojandi ◽  
Rama Vasudevan ◽  
Fatta B. Nahab ◽  
Ritesh Ramdhani

Abstract Parkinson’s disease (PD) medication treatment planning is generally based on subjective data through in-office, physicianpatient interactions. The Personal KinetiGraphTM (PKG) has shown promise in enabling objective, continuous remote health monitoring for Parkinson’s patients. In this proof-of-concept study, we propose to use objective sensor data from the PKG and apply machine learning to subtype patients based on levodopa regimens and response. We apply k-means clustering to a dataset of with-in-subject Parkinson’s medication changes—clinically assessed by the PKG and Hoehn & Yahr (H&Y) staging. A random forest classification model was then used to predict patients’ cluster allocation based on their respective PKG data and demographic information. Clinically relevant clusters were developed based on longitudinal dopaminergic regimens—partitioned by levodopa dose, administration frequency, and total levodopa equivalent daily dose—with the PKG increasing cluster granularity compared to the H&Y staging. A random forest classifier was able to accurately classify subjects of the two most demographically similar clusters with an accuracy of 87:9 ±1:3


2020 ◽  
Vol 5 (1) ◽  
pp. 343
Author(s):  
Attiya Istarini ◽  
Yuliarni Syafrita ◽  
Restu Susanti

<p><strong><em>Background</em></strong><em>: Parkinson's disease (PD) is a chronic neurodegenerative disease that manifests as movement disorders. Based on motor symptoms, PD is classified into subtypes of tremor and postural instability gait disorders (PIGD). The motor symptoms subtype is a predictor of disease progression, therapeutic response, and quality of life for Parkinson's patients. The purpose of this study is to identify some  factors that influence motor symptoms in Parkinson's disease.</em><strong><em>Methods:</em></strong><em> This research use cross sectional design. Samples were selected by consecutive sampling method that met the inclusion and exclusion criteria. Research subjects were 58 people. Statistical analysis using SPSS. p values &lt;0.05 were considered statistically significant.</em><strong><em>Results:</em></strong><em> This research include 58 patients, 55.2% were men with range of age 63.5 ± 8.5 years old. The mean age at onset was 57.9 ± 9.5 years and duration of disease 6.1 ± 4.6 years. Motor symptoms 53.4% dominant tremor. There was a significant relationship between disease stage and motor symptom subtypes (p &lt;0.001). There is no relationship between the patient's age, age at onset and duration of the disease with motor symptom subtypes.</em><strong><em>Conclusions:</em></strong><em> There is a relationship between disease stage and motor symptom. The patient's age, age at onset and duration of the disease are not related to the motor symptoms of Parkinson's patients.</em></p>


Sign in / Sign up

Export Citation Format

Share Document