Drought Patterns over the Amazon River Basin (1993-2019) as Interpreted by the Climate-driven Total Water Storage Change Fields

Author(s):  
Fupeng Li ◽  
Zhengtao Wang ◽  
Nengfang Chao ◽  
Wei Liang ◽  
Kunjun Tian ◽  
...  

<p><span>The Gravity Recovery and Climate Experiment (GRACE) mission, since 2002, has measured total water storage change (TWSC) and interpreted drought patterns in an unparalleled way. Nevertheless, there are still few sources could be used to understand drought patterns prior to the GRACE era. Here we derived multi-decadal climate-driven TWSC grids and used them to interpret drought patterns (1993-2019) over the Amazon basin. The correlations of climate-driven TWSC as compared to GRACE, GRACE Follow-on, and Swarm TWSC are 0.95, 0.92, and 0.77 in Amazon at grid scale (0.5° resolution). The drought patterns assessed by the climate-driven TWSC are consistent to those interpreted by the Palmer Drought Severity Index and GRACE TWSC. We also found that the 1998 and 2016 drought events in Amazon, both induced by the strong El Niño events, show similar drought patterns. This study provides a new perspective for interpreting long-term drought patterns prior to the GRACE period.</span></p>

2021 ◽  
Vol 13 (6) ◽  
pp. 1124
Author(s):  
Kunjun Tian ◽  
Zhengtao Wang ◽  
Fupeng Li ◽  
Yu Gao ◽  
Yang Xiao ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) mission has measured total water storage change (TWSC) and interpreted drought patterns in an unparalleled way since 2002. Nevertheless, there are few sources that can be used to understand drought patterns prior to the GRACE era. In this study, we extended the gridded GRACE TWSC to 1993 by combining principal component analysis (PCA), least square (LS) fitting, and multiple linear regression (MLR) methods using climate variables as input drivers. We used the extended (climate-driven) TWSC to interpret drought patterns (1993–2019) over the Amazon basin. Results showed that, in the Amazon area with the resolution of 0.5°, GRACE, GRACE follow on, and Swarm had correlation coefficients of 0.95, 0.92, and 0.77 compared with climate-driven TWSCS, respectively. The drought patterns assessed by the climate-driven TWSC were consistent with those interpreted by the Palmer Drought Severity Index and GRACE TWSC. We also found that the 1998 and 2016 drought events in the Amazon, both induced by strong El Niño events, showed similar drought patterns. This study provides a new perspective for interpreting long-term drought patterns prior to the GRACE period.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bramha Dutt Vishwakarma ◽  
Jinwei Zhang ◽  
Nico Sneeuw

AbstractThe Gravity Recovery And Climate Experiment (GRACE) satellite mission recorded temporal variations in the Earth’s gravity field, which are then converted to Total Water Storage Change (TWSC) fields representing an anomaly in the water mass stored in all three physical states, on and below the surface of the Earth. GRACE provided a first global observational record of water mass redistribution at spatial scales greater than 63000 km2. This limits their usability in regional hydrological applications. In this study, we implement a statistical downscaling approach that assimilates 0.5° × 0.5° water storage fields from the WaterGAP hydrology model (WGHM), precipitation fields from 3 models, evapotranspiration and runoff from 2 models, with GRACE data to obtain TWSC at a 0.5° × 0.5° grid. The downscaled product exploits dominant common statistical modes between all the hydrological datasets to improve the spatial resolution of GRACE. We also provide open access to scripts that researchers can use to produce downscaled TWSC fields with input observations and models of their own choice.


2019 ◽  
Vol 9 (1) ◽  
pp. 133-143
Author(s):  
Ayelen Pereira ◽  
Cecilia Cornero ◽  
Ana C. O. C. Matos ◽  
M. Cristina Pacino ◽  
Denizar Blitzkow

Abstract The continental water storage is significantly in-fluenced by wetlands, which are highly affected by climate change and anthropogenic influences. The Pantanal, located in the Paraguay river basin, is one of the world’s largest and most important wetlands because of the environmental biodiversity that represents. The satellite gravity mission GRACE (Gravity Recovery And Climate Experiment) provided until 2017 time-variable Earth’s gravity field models that reflected the variations due to mass transport processes-like continental water storage changes-which allowed to study environments such as wetlands, at large spatial scales. The water storage variations for the period 2002-2016, by using monthly land water mass grids of Total Water Storage (TWS) derived from GRACE solutions, were evaluated in the Pantanal area. The capability of the GRACE mission for monitoring this particular environment is analyzed, and the comparison of the water mass changes with rainfall and hydrometric heights data at different stations distributed over the Pantanal region was carried out. Additionally, the correlation between the TWS and river gauge measurements, and the phase differences for these variables, were also evaluated. Results show two distinct zones: high correlations and low phase shifts at the north, and smaller correlation values and consequently significant phase differences towards the south. This situation is mainly related to the hydrogeological domains of the area.


2021 ◽  
Author(s):  
Steven Reinaldo Rusli ◽  
Albrecht Weerts ◽  
Victor Bense

<p>In this study, we estimate the water balance components of a highly groundwater-dependent and hydrological data-scarce basin of the upper reaches of the Citarum river in West Java, Indonesia. Firstly, we estimate the groundwater abstraction volumes based on population size and a review of literature (0.57mm/day). Estimates of other components like rainfall, actual evaporation, discharge, and total water storage changes are derived from global datasets and are simulated using a distributed hydrological wflow_sbm model which yields additional estimates of discharge, actual evaporation, and total water storage change. We compare each basin water balance estimate as well as quantify the uncertainty of some of the components using the Extended Triple Collocation (ETC) method.</p><p>The ETC application on four different rainfall estimates suggests a preference of using the CHIRPS product as the input to the water balance components estimates as it delivers the highest r<sup>2</sup>  and the lowest RMSE compared to three other sources. From the different data sources and results of the distributed hydrological modeling using CHIRPS as rainfall forcing, we estimate a positive groundwater storage change between 0.12 mm/day - 0.60 mm/day. These results are in agreement with groundwater storage change estimates based upon GRACE gravimetric satellite data, averaged at 0.25 mm/day. The positive groundwater storage change suggests sufficient groundwater recharge occurs compensating for groundwater abstraction. This conclusion seems in agreement with the observation since 2005, although measured in different magnitudes. To validate and narrow the estimated ranges of the basin water storage changes, a devoted groundwater model is necessary to be developed. The result shall also aid in assessing the current and future basin-scale groundwater level changes to support operational water management and policy in the Upper Citarum basin.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Jiazhen Li

The Gravity Recovery and Climate Experiment (GRACE) satellite mission provides measurements of Earth’s static and time-variable gravity fields with monthly resolution. In this study, changes of water storage in northwestern China were determined by GRACE monthly gravity field data obtained from 2003 to 2010. Comparisons of water storage change (WSC) simulated by a four-dimensional assimilation model (Noah) and observed by GRACE revealed similar patterns of change and a correlation coefficient of 0.71(P<0.05). Trend analysis indicated significant changes in the spatiotemporal variation of WSC in northwestern China during the 8-year study period, which were stronger in the east than in the west and more pronounced in the south than in the north. The most pronounced increase in water storage occurred in Gansu and Qinghai provinces, but, overall, water storage increased by 0.61 mm/a over northwestern China during the study period. Clear seasonal variations of WSC and precipitation were found, because glacial meltwater and precipitation are the main sources of water in the hydrosphere; meanwhile, the distributions of glaciers and permafrost also affect the spatial distribution of WSC.


Abstract The limited amount of shared reservoir monitoring data around the world is insufficient to quantify the dynamic nature of reservoir operation with conventional ground-based methods. With the emergence of the Reservoir Assessment Tool (RAT) driven by a multitude of earth observing satellites and models, historical observation of reservoir operation spanning 35 years was made using open-source techniques. Trends in reservoir storage change were compared with trends of four critical hydrologic variables (precipitation, runoff, evaporation, and Palmer Drought Severity Index) to understand the potential role of natural drivers in altering reservoir operating pattern. It was found that the reservoirs in Africa were losing active storage at a rate of more than 1% per year of total storage capacity. Smaller reservoirs (with a capacity of less than 0.5 km3) in South-East Asia were found to experience a sharp gain in storage of 0.5% to 1% per year of total storage capacity. Storage change trends of large reservoirs with multiple years of residence time that are designed for strategic water supply needs and drought control were found to be less affected by precipitation trends and influenced more by drought and evaporation trends. Over Africa, most reservoir storage change trends were dictated by evaporation trends, while South Asian reservoirs appear to have their storage change influenced by drought and evaporation trends. Finally, findings suggest that operation of newer reservoirs are more sensitive to long-term hydrological trends and the regulated surface water variability that is controlled by older dams in the upstream.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Qiudong Zhao ◽  
Jiazhen Li

Changes in permafrost influence water balance exchanges in watersheds of cryosphere. Water storage change (WSC) is an important factor in water cycle. We used Gravity Recovery and Climate Experiment (GRACE) satellite data to retrieve WSC in the Three-River Source Region and subregions. WSC in four types of permafrost (continuous, seasonal, island, and patchy permafrost) was analyzed during 2003–2010. The result showed that WSC had significant change; it increased by9.06±0.01 mm/a (21.89±0.02×109 m3) over the Three-River Source Region during the study period. The most significant changes of WSC were in continuous permafrost zone, with a total amount of about13.94±0.48×109 m3. The spatial distribution of WSC was in state of gain in the continuous permafrost zone, whereas it was in a state of loss in the other permafrost zones. Little changes of precipitation and runoff occurred in study area, but the WSC increased significantly, according to water balance equation, the changes of runoff and water storage were subtracted from changes of precipitation, and the result showed that changes of evaporation is minus which means the evaporation decreased in the Three-River Source Region during 2003–2010.


2021 ◽  
Vol 11 (20) ◽  
pp. 9594
Author(s):  
Lilu Cui ◽  
Cheng Zhang ◽  
Zhicai Luo ◽  
Xiaolong Wang ◽  
Qiong Li ◽  
...  

Accurate quantification of drought characteristics helps to achieve an objective and comprehensive analysis of drought events and to achieve early warning of drought and disaster loss assessment. In our study, a drought characterization approach based on drought severity index derived from Gravity Recovery and Climate Experiment (GRACE) and its Follow-On (GRACE-FO) data was used to quantify drought characteristics. In order to improve drought detection capability, we used the local drought data as calibration criteria to improve the accuracy of the drought characterization approach to determine the onset of drought. Additionally, the local precipitation data was used to test drought severity determined by the calibrated drought characterization approach. Results show that the drought event probability of detection (POD) of this approach in the four study regions increased by 61.29%, 25%, 94.29%, and 66.86%, respectively, after calibration. We used the calibrated approach to detect the drought events in Mainland China (MC) during 2016 and 2019. The results show that CAR of the four study regions is 100.00%, 92.31%, 100.00%, and 100.00%. Additionally, the precipitation anomaly index (PAI) data was used to evaluate the severity of drought from 2002 to 2020 determined by the calibrated approach. The results indicate that both have a strong similar spatial distribution. Our analysis demonstrates that the proposed approach can serve a useful tool for drought monitoring and characterization.


2019 ◽  
Author(s):  
Victor Pellet ◽  
Filipe Aires ◽  
Fabrice Papa ◽  
Simon Munier ◽  
Bertrand Decharme

Abstract. The Total Water Storage Change (TWSC) over land is a major component of the global water cycle, with a large influence on climate variability, sea level budget and water resources availability for human life. Its first estimates at large-scale were made available with GRACE observations for the 2002–2016 period, followed since 2018 by the launch of GRACE-FO mission. In this paper, using an approach based on the water mass conservation rule, we proposed to merge satellite-based observations of precipitation and evapotranspiration along with in situ river discharge measurements to estimate TWSC over longer time periods (typically from 1980 to 2016), compatible with climate studies. We performed this task over five major Asian basins, subject to both large climate variability and strong anthropogenic pressure for water resources, and for which long term record of in situ discharge measurements are available. Our SAtellite Water Cycle (SAWC) reconstruction provides TWSC estimates very coherent in terms of seasonal and interannual variations with independent sources of information such as (1) TWSC GRACE-derived observations (over the 2002–2015 period), (2) ISBA-CTRIP model simulations (1980–2015), and (3) multi-satellite inundation extent (1993–2007). This analysis shows the advantages of the use of multiple satellite-derived data sets along with in situ data to perform hydrologically coherent reconstruction of missing water component estimate. It provides a new critical source of information for long term monitoring of TWSC and to better understand their critical role in the global and terrestrial water cycle.


2020 ◽  
Vol 8 ◽  
Author(s):  
Bramha Dutt Vishwakarma

With ongoing climate change, we are staring at possibly longer and more severe droughts in the future. Therefore, monitoring and understanding duration and intensity of droughts, and how are they evolving in space and time is imperative for global socio-economic security. Satellite remote sensing has helped us a lot in this endeavor, but most of the satellite missions observe only near-surface properties of the Earth. A recent geodetic satellite mission, GRACE, measured the water storage change both on and beneath the surface, which makes it unique and valuable for drought research. This novel dataset comes with unique problems and characteristics that we should acknowledge before using it. In this perspective article, I elucidate important characteristics of various available GRACE products that are important for drought research. I also discuss limitations of GRACE mission that one should be aware of, and finally I shed some light on latest developments in GRACE data processing that may open numerous possibilities in near future.


Sign in / Sign up

Export Citation Format

Share Document