scholarly journals LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Aleksander Touznik ◽  
Rika Maruyama ◽  
Kana Hosoki ◽  
Yusuke Echigoya ◽  
Toshifumi Yokota
2011 ◽  
Vol 21 (9-10) ◽  
pp. 685
Author(s):  
N.A. Naryshkin ◽  
J. Narasimhan ◽  
A. Dakka ◽  
V. Gabbeta ◽  
M. Haley ◽  
...  

2012 ◽  
Vol 22 (9-10) ◽  
pp. 848 ◽  
Author(s):  
N. Naryshkin ◽  
J. Narasimhan ◽  
A. Dakka ◽  
V. Gabbeta ◽  
M. Haley ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) have important role in conversion of Ang II to Ang III. Intravenous APA administration lowers blood pressure in hypertensive rats. In contrast, APA inhibition in the brain lowers blood pressure in hypertensive rats. Therefore APA might have different role on cardiovascular regulation. However, a role of APA and Ang III on cardiovascular regulation especially in the brain has not been fully understood. Our purpose of present study was to investigate a role of APA and Ang III in the brain on cardiovascular regulation in conscious state. Method: 12-13 weeks old Wistar Kyoto rat (WKY) and 12-16 weeks old spontaneously hypertensive rat (SHR) were used. i) APA distribution in the brain was evaluated by immunohistochemistry. Protein expression of APA was evaluated by Western blotting. Enzymatic activity of APA was evaluated using L-glutamic acid γ-(4-nitroanilide) as a substrate. ii) WKY received icv administration of Ang II 25ng/2μL and Ang III 25ng/2μL. We recorded change in mean arterial pressure (MAP) in conscious and unrestraied state and measured induced drinking time. iii) SHR received icv administeration of recombinant APA 400ng/4μL. We recorded change in MAP in conscious and unrestraied state and measured induced drinking time. Result: i) APA was diffusely immunostained in the cells of brain stem including cardiovascular regulatory area such as rostral ventrolateral medulla. Protein expression and APA activity in the brain were similar between WKY (n=3) and SHR (n=3).ii) Icv administration of Ang II increased MAP by 33.8±3.8 mmHg and induced drinking behavior for 405±90 seconds (n=4). Icv administration of Ang III also increased MAP by 24.7±2.4 mmHg and induced drinking behavior for 258±62 seconds (n=3). These vasopressor activity and induced drinking behavior was completely blocked by pretretment of angiotensin receptor type 1 blocker.iii) Icv administration of APA increased MAP by 10.0±1.7 mmHg (n=3). Conclusion: These results suggested that Ang III in the brain increase blood pressure by Angiotensin type 1 receptor dependent mechanism and APA in the brain may involved in blood pressure regulation as a vasopressor enzyme.


2017 ◽  
Vol 26 (19) ◽  
pp. 3797-3807 ◽  
Author(s):  
Hieu T. Nguyen ◽  
Melissa N. Hinman ◽  
Xuan Guo ◽  
Alok Sharma ◽  
Hiroyuki Arakawa ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1469-1480 ◽  
Author(s):  
Xu Lin ◽  
Xintng Zhen ◽  
Haiting Huang ◽  
Haohao Wu ◽  
Yanwu You ◽  
...  

Background/Aims: Transforming growth factor beta 1 (TGF-β1) plays a critical role in the pathogenesis of glomerulosclerosis. The purpose of this study was to examine the effects of inhibition of miR-155 on podocyte injury induced by TGF-β1 and to determine further molecular mediators involved in the effects of miR-155. Methods: Conditionally immortalized podocytes were cultured in vitro and they were divided into four groups: control; TGF-β1 treatment; TGF-β1 with miR-155 knockdown [using antisense oligonucleotides against miR-155 (ASO-miR-155)] and TGF-β1 with negative control antisense oligonucleotides (ASO-NC). Real time RT-PCR and Western blot analysis were employed to determine the mRNA and protein expression of nephrin, desmin and caspase-9, respectively. Flow cytometry was used to examine the apoptotic rate of podocytes and DAPI fluorescent staining was used to determine apoptotic morphology. In addition, we examined the levels of miR-155, TGF-β1, nephrin, desmin and caspase-9 in glomerular tissues of nephropathy induced by intravenous injections of adriamycin in rats. Results: mRNA and protein expression of desmin and caspase-9 was increased in cultured TGF-β1-treated podocytes, whereas nephrin was decreased as compared with the control group. Importantly, miR-155 knockdown significantly attenuated upregulation of desmin and caspase-9, and alleviated impairment of nephrin induced by TGF-β1. Moreover, the number of apoptotic podocytes was increased after exposure to TGF-β1 and this was alleviated after miR-155 knockdown. Knocking down miR-155 also decreased an apoptosis rate of TGF-β1-treated podocytes. Note that negative control antisense oligonucleotides failed to alter an increase of the apoptosis rate in TGF-β1-treated podocytes. Consistent with in vitro results, expression of miR-155, TGF-β1, desmin and caspase-9 was increased and nephrin was decreased in glomerular tissues with nephropathy in vivo experiments. Conclusions: TGF-β1 impairs the protein expression of nephrin and amplifies the protein expression of desmin and caspase -9 via miR-155 signal pathway. Inhibition of miR-155 alleviates these changes in podocytes-treated with TGF-β1 and attenuated apoptosis of podocytes. Our data suggest that miR-155 plays a role in mediating TGF-β1-induced podocyte injury via nephrin, desmin and caspase-9. Results of the current study also indicate that blocking miR-155 signal has a protective effect on podocyte injury. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of podocyte injury observed in glomerulosclerosis.


2008 ◽  
Vol 82 (21) ◽  
pp. 10864-10872 ◽  
Author(s):  
Angsana Phuphuakrat ◽  
Romchat Kraiwong ◽  
Chompunuch Boonarkart ◽  
Darat Lauhakirti ◽  
Tun-Hou Lee ◽  
...  

ABSTRACT ADARs (adenosine deaminases that act on double-stranded RNA) are RNA editing enzymes that catalyze a change from adenosine to inosine, which is then recognized as guanosine by translational machinery. We demonstrate here that overexpression of ADARs but not of an ADAR mutant lacking editing activity could upregulate human immunodeficiency virus type 1 (HIV-1) structural protein expression and viral production. Knockdown of ADAR1 by RNA silencing inhibited HIV-1 production. Viral RNA harvested from transfected ADAR1-knocked-down cells showed a decrease in the level of unspliced RNA transcripts. Overexpression of ADAR1 induced editing at a specific site in the env gene, and a mutant with the edited sequence was expressed more efficiently than the wild-type viral genome. These data suggested the role of ADAR in modulation of HIV-1 replication. Our data demonstrate a novel mechanism in which HIV-1 employs host RNA modification machinery for posttranscriptional regulation of viral protein expression.


Sign in / Sign up

Export Citation Format

Share Document