scholarly journals A data driven approach to understanding the organization of high-level visual cortex

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
David M. Watson ◽  
Timothy J. Andrews ◽  
Tom Hartley
2020 ◽  
Vol 103 (9) ◽  
pp. 4913-4924
Author(s):  
Irmak Sargin ◽  
Charmayne E. Lonergan ◽  
John D. Vienna ◽  
John S. McCloy ◽  
Scott P. Beckman

2019 ◽  
Vol 40 (16) ◽  
pp. 4716-4731 ◽  
Author(s):  
David D. Coggan ◽  
Afrodite Giannakopoulou ◽  
Sanah Ali ◽  
Burcu Goz ◽  
David M. Watson ◽  
...  

2005 ◽  
Vol 10 (4) ◽  
pp. 183-192 ◽  
Author(s):  
Doug Burns

Abstract Since its inception in early 2000, Vanderbilt University's Peripherally Inserted Central Catheter (PICC) Service has experienced a high level of success as measured by high proficiency rates and increasing patient procedures each year, low complication rates during and after PICC placements, and an increasing scope of influence within the Vanderbilt University Medical Center and Children's Hospital, the surrounding community, and in the Southeastern United States. Primary drivers of the PICC Service's continuing success include consistent applications of technique and technology, a data-driven approach to assessing the program's progress, and appropriately managing customers' expectations and needs. Over the past five years, data were collected on more than 12,500 PICC placements performed in this specialized nursing program. Retrospective analyses of the data demonstrate an increasing rate of successful placements (from 87.2% to 92.4%) since the program's inception in 2000 to late 2004. Furthermore, the choice of PICC technology has had a significant impact on the odds for occlusion or infection. The Vanderbilt PICC Service provides a model by which other programs can be established, maintained, and expanded into advanced practice.


2017 ◽  
Author(s):  
Santiago A. Cadena ◽  
George H. Denfield ◽  
Edgar Y. Walker ◽  
Leon A. Gatys ◽  
Andreas S. Tolias ◽  
...  

AbstractDespite great efforts over several decades, our best models of primary visual cortex (V1) still predict spiking activity quite poorly when probed with natural stimuli, highlighting our limited understanding of the nonlinear computations in V1. Recently, two approaches based on deep learning have been successfully applied to neural data: On the one hand, transfer learning from networks trained on object recognition worked remarkably well for predicting neural responses in higher areas of the primate ventral stream, but has not yet been used to model spiking activity in early stages such as V1. On the other hand, data-driven models have been used to predict neural responses in the early visual system (retina and V1) of mice, but not primates. Here, we test the ability of both approaches to predict spiking activity in response to natural images in V1 of awake monkeys. Even though V1 is rather at an early to intermediate stage of the visual system, we found that the transfer learning approach performed similarly well to the data-driven approach and both outperformed classical linear-nonlinear and wavelet-based feature representations that build on existing theories of V1. Notably, transfer learning using a pre-trained feature space required substantially less experimental time to achieve the same performance. In conclusion, multi-layer convolutional neural networks (CNNs) set the new state of the art for predicting neural responses to natural images in primate V1 and deep features learned for object recognition are better explanations for V1 computation than all previous filter bank theories. This finding strengthens the necessity of V1 models that are multiple nonlinearities away from the image domain and it supports the idea of explaining early visual cortex based on high-level functional goals.Author summaryPredicting the responses of sensory neurons to arbitrary natural stimuli is of major importance for understanding their function. Arguably the most studied cortical area is primary visual cortex (V1), where many models have been developed to explain its function. However, the most successful models built on neurophysiologists’ intuitions still fail to account for spiking responses to natural images. Here, we model spiking activity in primary visual cortex (V1) of monkeys using deep convolutional neural networks (CNNs), which have been successful in computer vision. We both trained CNNs directly to fit the data, and used CNNs trained to solve a high-level task (object categorization). With these approaches, we are able to outperform previous models and improve the state of the art in predicting the responses of early visual neurons to natural images. Our results have two important implications. First, since V1 is the result of several nonlinear stages, it should be modeled as such. Second, functional models of entire visual pathways, of which V1 is an early stage, do not only account for higher areas of such pathways, but also provide useful representations for V1 predictions.


2021 ◽  
Author(s):  
Jordan Dotson ◽  
Eric Anslyn ◽  
Matthew Sigman

Dynamic covalent chemistry-based sensors have recently emerged as powerful tools to rapidly determine the enantiomeric excess of organic small molecules. While a bevy of sensors have been developed, those for flexible molecules with stereocenters remote to the functional group that binds the chiroptical sensor remain scarce. In this study, we develop an iterative, data-driven workflow to design and analyze a chiroptical sensor capable of assessing challenging acyclic γ-stereogenic alcohols. Fol-lowing sensor optimization, the mechanism of sensing was probed with a combination of computational parameterization of the sensor molecules, statistical modeling, and high-level density functional theory (DFT) calculations. These were used to elucidate the mechanism of stereochemical recognition and revealed that competing attractive non-covalent interactions (NCIs) determine the overall performance of the sensor. It is anticipated that the data-driven workflows developed herein will be generally applicable to the development and understanding of dynamic covalent and supramolecular sensors.


Author(s):  
Virginia Fani ◽  
Bianca Bindi ◽  
Romeo Bandinelli

HVLV environments are characterized by high product variety and small lot production, pushing companies to recursively design and optimize their production systems in a very short time to reach high-level performance. To increase their competitiveness, companies belonging to these industries, often SMEs working as third parties, ask for decision-making tools to support them in a quick and reactive reconfiguration of their production lines. Traditional discrete event simulation models, widely studied in the literature to solve production-related issues, do not allow real-time support to business decisions in dynamic contexts, due to the time-consuming activities needed to re-align parameters to changing environments. Data-driven approach overcomes these limitations, giving the possibility to easily update input and quickly rebuild the model itself without any changes in the modeling code. The proposed data-driven simulation model has also been interfaced with a commonly-used BI tool to support companies in the iterative comparison of different scenarios to define the optimal resource allocation for the requested production plan. The simulation model has been implemented into a SME operating in the footwear industry, showing how this approach can be used by companies to increase their performance even without a specific knowledge in building and validating simulation models.


2019 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

AbstractMonocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female); binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured recovery of a collection of glutamatergic and GABAergic receptor subunits in V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with high expression of GluA2 and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Justin L. Balsor ◽  
David G. Jones ◽  
Kathryn M. Murphy

Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal model to explore the effects of 3 visual treatments started during the CP (n=24, 10 male and 14 female): binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.


Author(s):  
Sebastian Herzog ◽  
Florentin Wörgötter

AbstractDynamic systems are usually described by differential equations, but formulating these equations requires a high level of expertise and a detailed understanding of the observed system to be modelled. In this work, we present a data-driven approach, which tries to find a parameterization of neural differential equations system to describe the underlying dynamic of the observed data. The presented method is applied to a multi-agent system with thousand agents.


Sign in / Sign up

Export Citation Format

Share Document