scholarly journals The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone C. Barbosa ◽  
Thatyane M. Nobre ◽  
Diogo Volpati ◽  
Eduardo M. Cilli ◽  
Daniel S. Correa ◽  
...  
2012 ◽  
Vol 80 (7) ◽  
pp. 2454-2463 ◽  
Author(s):  
Stephen J. Forbes ◽  
Daniel Martinelli ◽  
Chyongere Hsieh ◽  
Jeffrey G. Ault ◽  
Michael Marko ◽  
...  

ABSTRACTInvasion of intestinal epithelial cells bySalmonella entericaserovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as theSalmonellapathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry ofS. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface ofS. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of theS. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


2008 ◽  
Vol 190 (9) ◽  
pp. 3155-3160 ◽  
Author(s):  
Alena Sebkova ◽  
Daniela Karasova ◽  
Magdalena Crhanova ◽  
Eva Budinska ◽  
Ivan Rychlik

ABSTRACT In this study we characterized aro mutants of Salmonella enterica serovars Enteritidis and Typhimurium, which are frequently used as live oral vaccines. We found that the aroA, aroD, and aroC mutants were sensitive to blood serum, albumen, EDTA, and ovotransferrin, and this defect could be complemented by an appropriate aro gene cloned in a plasmid. Subsequent microarray analysis of gene expression in the aroD mutant in serovar Typhimurium indicated that the reason for this sensitivity might be the upregulation of murA. To confirm this, we artificially overexpressed murA from a multicopy plasmid, and this overexpression caused sensitivity of the strain to albumen and EDTA but not to serum and ovotransferrin. We concluded that attenuation of aro mutants is caused not only by their inability to synthesize aromatic metabolites but also by their defect in cell wall and outer membrane functions associated with decreased resistance to components of innate immune response.


2005 ◽  
Vol 187 (7) ◽  
pp. 2448-2457 ◽  
Author(s):  
Kiyoshi Kawasaki ◽  
Robert K. Ernst ◽  
Samuel I. Miller

ABSTRACT Salmonella enterica serovar Typhimurium remodels the lipid A component of lipopolysaccharide, a major component of the outer membrane, to survive within animals. The activation of the sensor kinase PhoQ in host environments increases the synthesis of enzymes that deacylate, palmitoylate, hydroxylate, and attach aminoarabinose to lipid A, also known as endotoxin. These modifications promote bacterial resistance to antimicrobial peptides and reduce the host recognition of lipid A by Toll-like receptor 4. The Salmonella lipid A 3-O-deacylase, PagL, is an outer membrane protein whose expression is regulated by PhoQ. In S. enterica serovar Typhimurium strains that had the ability to add aminoarabinose to lipid A, 3-O-deacylated lipid A species were not detected, despite the PhoQ induction of PagL protein expression. In contrast, strains defective for the aminoarabinose modification of lipid A demonstrated in vivo PagL activity, indicating that this membrane modification inhibited PagL's enzymatic activity. Since not all lipid A molecules are modified with aminoarabinose upon PhoQ activation, these results cannot be ascribed to the substrate specificity of PagL. PagL-dependent deacylation was detected in sonically disrupted membranes and membranes treated with the nonionic detergent n-octyl-β-d-glucopyranoside, suggesting that perturbation of the intact outer membrane releases PagL from posttranslational inhibition by aminoarabinose-containing membranes. Taken together, these results suggest that PagL enzymatic deacylation is posttranslationally inhibited by membrane environments, which either sequester PagL from its substrate or alter its conformation.


2001 ◽  
Vol 183 (5) ◽  
pp. 1784-1786 ◽  
Author(s):  
Christopher A. Conlin ◽  
Seng L. Tan ◽  
Huajun Hu ◽  
Todd Segar

ABSTRACT Mutations in apeR, a regulatory locus of the outer membrane esterase apeE from Salmonella entericaserovar Typhimurium, were shown to be alleles of thepstSCAB-phoU high-affinity phosphate transport operon. Expression of apeE was induced by phosphate limitation, and this induction required the phoBR phosphate regulatory system.


2000 ◽  
Vol 182 (14) ◽  
pp. 4077-4086 ◽  
Author(s):  
Tina Guina ◽  
Eugene C. Yi ◽  
Houle Wang ◽  
Murray Hackett ◽  
Samuel I. Miller

ABSTRACT The outer membrane protein contents of Salmonella enterica serovar Typhimurium strains with PhoP/PhoQ regulon mutations were compared by two-dimensional gel electrophoresis. At least 26 species of outer membrane proteins (OMPs) were identified as being regulated by PhoP/PhoQ activation. One PhoP/PhoQ-activated OMP was identified by semiautomated tandem mass spectrometry coupled with electronic database searching as PgtE, a member of theEscherichia coli OmpT and Yersinia pestis Pla family of outer membrane proteases. Salmonella PgtE expression promoted resistance to alpha-helical cationic antimicrobial peptides (α-CAMPs). Strains expressing PgtE cleaved C18G, an 18-residue α-CAMP present in culture medium, indicating that protease activity is likely to be the mechanism of OmpT-mediated resistance to α-CAMPs. PhoP/PhoQ did not regulate the transcription or export of PgtE, indicating that another PhoP/PhoQ-dependent mechanism is required for PgtE outer membrane localization. PgtE is a posttranscriptionally regulated component of the PhoP/PhoQ regulon that contributes toSalmonella resistance to innate immunity.


Sign in / Sign up

Export Citation Format

Share Document