scholarly journals Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Francesca L. Brailsford ◽  
Helen C. Glanville ◽  
Peter N. Golyshin ◽  
Penny J. Johnes ◽  
Christopher A. Yates ◽  
...  
2014 ◽  
Vol 884-885 ◽  
pp. 91-95
Author(s):  
Shang Chao Yue ◽  
Le Jun Zhao ◽  
Xiu Duo Wang ◽  
Qi Shan Wang ◽  
Feng Hua He

The objectives of this study were to investigate impact of preoxidation on disinfection by-product (DBP) precursors in drinking water via two different preoxidation methods. The full-scale study was conducted on surface river water in a water supply plant in Tianjin, China. Two treatment trains were performed, with prechlorination and preozonation as preoxidation methods, respectively. The water samples were collected on different stages along the treatment processes and analyzed by following organic parameters: dissolved organic carbon (DOC), UV254 and specific ultraviolet absorbance (SUVA). The results indicated that Train 2 with preozonation was more effective to reduce DBP precursors. Preozonation possessed an excellent ability in the removal of UV254 and SUVA, the removal efficiencies were 25.14% and 18.77%, respectively, comparing to the removal rates of 6.66% and 5.64% during prechlorination, separately.


2014 ◽  
Vol 5 (2) ◽  
pp. 141 ◽  
Author(s):  
D. Shilla

Estuaries are often considered important filters for inorganic and organic nutrients, as they are located between the land and sea. This study reports on the fluvial fluxes and estuarine transformations and retention of dissolved nutrients (total oxidized nitrogen [TON = NO<sub>2</sub><sup>−</sup> and NO<sub>3</sub><sup>−</sup>]), NH<sub>4</sub><sup>+</sup>, PO<sub>4</sub><sup>3−</sup>, and dissolved organic carbon (DOC) in Manko estuary, Okinawa, Japan. The transport and transformation of dissolved nutrients and DOC varied widely among the eight conducted surveys due to variations in freshwater discharge and subsequent flushing times. Under high fluvial discharge, particularly during the May–June rainy season, the transport of nutrients and DOC accounted for up to 70%, 88%, 93%, and 53% of the annual transport of TON, NH<sub>4</sub><sup>+</sup>, PO<sub>4</sub><sup>3−</sup>, and DOC, respectively. The flushing times of river water into the estuary, which varied from 0.5 to 46 days, were important in determining the degree to which fluvial nutrients were transformed and retained within the estuary. The effect of long flushing times was evident during the dry months (December–March), when biological and geochemical processes within the estuary removed most of the fluvial nutrients and DOC.


2004 ◽  
Vol 18 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. Brooks Avery ◽  
Robert J. Kieber ◽  
Joan D. Willey ◽  
G. Christopher Shank ◽  
Robert F. Whitehead

2017 ◽  
Author(s):  
Catherine M. Heppell ◽  
Andrew Binley ◽  
Mark Trimmer ◽  
Tegan Darch ◽  
Ashley Jones ◽  
...  

Abstract. The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood, yet important to assess given the potential changes to production and delivery of DOC and nitrate arising from climate change. We measured DOC and nitrate concentrations in river water of six reaches of the lowland River Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between Baseflow Index (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand and clay). We found a significant positive relationship between nitrate and Baseflow Index (p 


2015 ◽  
Vol 12 (1) ◽  
pp. 269-279 ◽  
Author(s):  
A. Kubo ◽  
M. Yamamoto-Kawai ◽  
J. Kanda

Abstract. Concentrations of recalcitrant and bioavailable dissolved organic carbon (DOC) and their seasonal variations were investigated at three stations in Tokyo Bay, Japan, and in two freshwater sources flowing into the bay. On average, recalcitrant DOC (RDOC), as a remnant of DOC after 150 days of bottle incubation, accounted for 78% of the total DOC in Shibaura sewage treatment plant (STP) effluent, 67% in the upper Arakawa River water, 66% in the lower Arakawa River water, and 78% in surface bay water. Bioavailable DOC (BDOC) concentrations, defined as DOC minus RDOC, were lower than RDOC at all stations. In freshwater environments, RDOC concentrations were almost constant throughout the year. In the bay, RDOC was higher during spring and summer than in autumn and winter because of freshwater input and biological production. The relative concentration of RDOC in the bay derived from phytoplankton, terrestrial, and open-oceanic waters was estimated to be 8–10, 21–32, and 59–69%, respectively, based on multiple regression analysis of RDOC, salinity, and chl a. In addition, comparison with previous data from 1972 revealed that concentrations of RDOC and BDOC have decreased by 33 and 74% at freshwater sites and 39 and 76% in Tokyo Bay, while the ratio of RDOC to DOC has increased. The change in DOC concentration and composition was probably due to increased amounts of STP effluent entering the system. Tokyo Bay exported mostly RDOC to the open ocean because of the remineralization of BDOC.


Chemosphere ◽  
1997 ◽  
Vol 34 (1) ◽  
pp. 87-97 ◽  
Author(s):  
F. Worrall ◽  
A. Parker ◽  
J.E. Rae ◽  
A.C. Johnson

Sign in / Sign up

Export Citation Format

Share Document