scholarly journals Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rameez Ahmad ◽  
Anzar A. Khuroo ◽  
Bipin Charles ◽  
Maroof Hamid ◽  
Irfan Rashid ◽  
...  
Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 470
Author(s):  
Martha Charitonidou ◽  
Konstantinos Kougioumoutzis ◽  
John M. Halley

Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen’s bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species’ response to climate change. We predicted the species’ future distribution based on three different climate models in two climate scenarios. We also explored the species’ potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 333
Author(s):  
Lin Wang ◽  
Maurice Defo ◽  
Zhe Xiao ◽  
Hua Ge ◽  
Michael A. Lacasse

Previous studies have shown that the effects of climate change on building structures will increase the mould growth risk of the wood-frame building envelope in many circumstances. This risk can be controlled by wind-driven rain deflection, improving water tightness of the exterior facade, and improving cladding ventilation. However, the effectiveness of these risk mitigation strategies are subject to various uncertainties, such as the uncertainties of wall component properties and micro-climatic conditions. The objective of this paper is to apply stochastic hygrothermal simulation to evaluate the mould growth risk of a brick veneer-clad wood-frame wall with a drainage cavity under historical and future climatic conditions of Ottawa, a Canadian city located in a cold climate zone. An extensive literature review was conducted to quantify the range of stochastic variables including rain deposition factor, rain leakage moisture source, cladding ventilation rate and material properties of brick. The randomised Sobol sequence-based sampling method, one of the Randomized Quasi-Monte Carlo (RQMC) methods, was applied for risk assessment and error estimation. It was found that, under the climatic condition of Ottawa, limiting the amount of wind-driven rain to which walls are subjected is a more robust mitigation measure than improving cladding ventilation in controlling mould growth risk, the improving of water tightness of exterior façade is not as robust as wind-driven rain deflection and cladding ventilation, however, the reduction of rainwater penetration can reduce the mould growth risk at different levels of rain deposition factor and cladding ventilation rate.


Climate ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 1079-1096 ◽  
Author(s):  
Richard Dawson

Sign in / Sign up

Export Citation Format

Share Document