scholarly journals Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
K. Anantha Kumar ◽  
V. Sugunamma ◽  
N. Sandeep ◽  
M. T. Mustafa

Abstract This report presents the flow and heat transfer characteristics of MHD micropolar fluid due to the stretching of a surface with second order velocity slip. The influence of nonlinear radiation and irregular heat source/sink are anticipated. Simultaneous solutions are presented for first and second-order velocity slips. The PDEs which govern the flow have been transformed as ODEs by the choice of suitable similarity transformations. The transformed nonlinear ODEs are converted into linear by shooting method then solved numerically by fourth-order Runge-Kutta method. Graphs are drowned to discern the effect of varied nondimensional parameters on the flow fields (velocity, microrotation, and temperature). Along with them the coefficients of Skin friction, couple stress, and local Nussel number are also anticipated and portrayed with the support of the table. The results unveil that the non-uniform heat source/sink and non-linear radiation parameters plays a key role in the heat transfer performance. Also, second-order slip velocity causes strengthen in the distribution of velocity but a reduction in the distribution of temperature is perceived.

2019 ◽  
Vol 13 (1) ◽  
pp. 4558-4574 ◽  
Author(s):  
K. Anantha Kumar ◽  
B. Ramadevi ◽  
V. Sugunamma ◽  
J. V. Ramana Reddy

This report presents the flow and heat transfer characteristics on magnetohydrodynamic non-Newtonian fluid across a wedge near the stagnation point. The fluid flow is time independent and laminar. The radiation and irregular heat sink/source effects are deemed. The system of nonlinear ODEs is attained from PDEs by choosing the proper similarity transformations. Further, the well-known shooting and Runge-Kutta methods are utilized to acquire the problem’s solution subject to assumed boundary conditions. Figures are outlined to emphasize the impact of several parameters on the fields of velocity and temperature. Further, the rate of heat transfer and friction factor are also anticipated and portrayed with the assistance of table. Results indicate that the curves of velocity diminish with shrinking parameter, magnetic field parameter and material fluid parameter. Also the non-uniform heat source/sink parameters play a crucial role in the heat transfer performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Priyanka Agrawal ◽  
Praveen Kumar Dadheech ◽  
R.N. Jat ◽  
Dumitru Baleanu ◽  
Sunil Dutt Purohit

Purpose The purpose of this paper is to study the comparative analysis between three hybrid nanofluids flow past a permeable stretching surface in a porous medium with thermal radiation. Uniform magnetic field is applied together with heat source and sink. Three set of different hybrid nanofluids with water as a base fluid having suspension of Copper-Aluminum Oxide (Cu−Al2O3), Silver-Aluminum Oxide (Ag−Al2O3) and Copper-Silver (Cu−Ag) nanoparticles are considered. The Marangoni boundary condition is applied. Design/methodology/approach The governing model of the flow is solved by Runga–Kutta fourth-order method with shooting technique, using appropriate similarity transformations. Temperature and velocity field are explained by the figures for many flow pertinent parameters. Findings Almost same behavior is observed for all the parameters presented in this analysis for the three set of hybrid nanofluids. For increased mass transfer wall parameter ( fw) and Prandtl Number (Pr), heat transfer rate cuts down for all three sets of hybrid nanofluids, and reverse effect is seen for radiation parameter (R), and heat source/sink parameter ( δ). Practical implications The thermal conductivity of hybrid nanofluids is much larger than the conventional fluids; thus, heat transfer efficiency can be improved with these fluids and its implications can be seen in the fields of biomedical, microelectronics, thin-film stretching, lubrication, refrigeration, etc. Originality/value The current analysis is to optimize heat transfer of three different radiative hybrid nanofluids ( Cu−Al2O3/H2O, Ag−Al2O3/H2O and Cu−Ag/H2O) over stretching surface after applying heat source/sink with Marangoni convection. To the best of the authors’ knowledge, this work is new and never published before.


2020 ◽  
Vol 50 (4) ◽  
pp. 283-289
Author(s):  
S. Jena ◽  
S. R. Mishra ◽  
P.K. Pattnaik ◽  
Ram Prakash Sharma

This paper deals with nanofluid flow between parallel plates and heat transfer through porous media with heat source /sink. The governing equations are transformed into self-similar ordinary differential equations by adopting similarity transformations and then the converted equations are solved numerically by Runge-Kutta fourth order method. Special emphasis has been given to the parameters of physical interest which include Prandtl number, magnetic parameter, porous matrix, chemical reaction parameter and heat source parameter. The results obtained for velocity, temperature and concentration are shown in graphs. The comparison of the special case of this present results with the existing numerical solutions in the literature shows excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document