scholarly journals A Super-Learner Model for Tumor Motion Prediction and Management in Radiation Therapy: Development and Feasibility Evaluation

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui Lin ◽  
Wei Zou ◽  
Taoran Li ◽  
Steven J. Feigenberg ◽  
Boon-Keng K. Teo ◽  
...  

Abstract In cancer radiation therapy, large tumor motion due to respiration can lead to uncertainties in tumor target delineation and treatment delivery, thus making active motion management an essential step in thoracic and abdominal tumor treatment. In current practice, patients with tumor motion may be required to receive two sets of CT scans – the initial free-breathing 4-dimensional CT (4DCT) scan for tumor motion estimation and a second CT scan under appropriate motion management such as breath-hold or abdominal compression. The aim of this study is to assess the feasibility of a predictive model for tumor motion estimation in three-dimensional space based on machine learning algorithms. The model was developed based on sixteen imaging features extracted from non-4D diagnostic CT images and eleven clinical features extracted from the Electronic Health Record (EHR) database of 150 patients to characterize the lung tumor motion. A super-learner model was trained to combine four base machine learning models including the Random Forest, Multi-Layer Perceptron, LightGBM and XGBoost, the hyper-parameters of which were also optimized to obtain the best performance. The outputs of the super-learner model consist of tumor motion predictions in the Superior-Inferior (SI), Anterior-Posterior (AP) and Left-Right (LR) directions, and were compared against tumor motions measured in the free-breathing 4DCT scans. The accuracy of predictions was evaluated using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) through ten rounds of independent tests. The MAE and RMSE of predictions in the SI direction were 1.23 mm and 1.70 mm; the MAE and RMSE of predictions in the AP direction were 0.81 mm and 1.19 mm, and the MAE and RMSE of predictions in the LR direction were 0.70 mm and 0.95 mm. In addition, the relative feature importance analysis demonstrated that the imaging features are of great importance in the tumor motion prediction compared to the clinical features. Our findings indicate that a super-learner model can accurately predict tumor motion ranges as measured in the 4DCT, and could provide a machine learning framework to assist radiation oncologists in determining the active motion management strategy for patients with large tumor motion.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Amit Sawant ◽  
Paul Keall ◽  
Kim Butts Pauly ◽  
Marcus Alley ◽  
Shreyas Vasanawala ◽  
...  

Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner). A balanced steady-state-free-precession (b-SSFP) sequence was used to acquire cine-2D and cine-3D (4D) images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter), tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter), tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Sanvitha Kasthuriarachchi ◽  
S. R. Liyanage

A combination of different machine learning models to form a super learner can definitely lead to improved predictions in any domain. The super learner ensemble discussed in this study collates several machine learning models and proposes to enhance the performance by considering the final meta- model accuracy and the prediction duration. An algorithm is proposed to rate the machine learning models derived by combining the base classifiers voted with different weights. The proposed algorithm is named as Log Loss Weighted Super Learner Model (LLWSL). Based on the voted weight, the optimal model is selected and the machine learning method derived is identified. The meta- learner of the super learner uses them by tuning their hyperparameters. The execution time and the model accuracies were evaluated using two separate datasets inside LMSSLIITD extracted from the educational industry by executing the LLWSL algorithm. According to the outcome of the evaluation process, it has been noticed that there exists a significant improvement in the proposed algorithm LLWSL for use in machine learning tasks for the achievement of better performances.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1252.2-1253
Author(s):  
R. Garofoli ◽  
M. Resche-Rigon ◽  
M. Dougados ◽  
D. Van der Heijde ◽  
C. Roux ◽  
...  

Background:Axial spondyloarthritis (axSpA) is a chronic rheumatic disease that encompasses various clinical presentations: inflammatory chronic back pain, peripheral manifestations and extra-articular manifestations. The current nomenclature divides axSpA in radiographic (in the presence of radiographic sacroiliitis) and non-radiographic (in the absence of radiographic sacroiliitis, with or without MRI sacroiliitis. Given that the functional burden of the disease appears to be greater in patients with radiographic forms, it seems crucial to be able to predict which patients will be more likely to develop structural damage over time. Predictive factors for radiographic progression in axSpA have been identified through use of traditional statistical models like logistic regression. However, these models present some limitations. In order to overcome these limitations and to improve the predictive performance, machine learning (ML) methods have been developed.Objectives:To compare ML models to traditional models to predict radiographic progression in patients with early axSpA.Methods:Study design: prospective French multicentric cohort study (DESIR cohort) with 5years of follow-up. Patients: all patients included in the cohort, i.e. 708 patients with inflammatory back pain for >3 months but <3 years, highly suggestive of axSpA. Data on the first 5 years of follow-up was used. Statistical analyses: radiographic progression was defined as progression either at the spine (increase of at least 1 point per 2 years of mSASSS scores) or at the sacroiliac joint (worsening of at least one grade of the mNY score between 2 visits). Traditional modelling: we first performed a bivariate analysis between our outcome (radiographic progression) and explanatory variables at baseline to select the variables to be included in our models and then built a logistic regression model (M1). Variable selection for traditional models was performed with 2 different methods: stepwise selection based on Akaike Information Criterion (stepAIC) method (M2), and the Least Absolute Shrinkage and Selection Operator (LASSO) method (M3). We also performed sensitivity analysis on all patients with manual backward method (M4) after multiple imputation of missing data. Machine learning modelling: using the “SuperLearner” package on R, we modelled radiographic progression with stepAIC, LASSO, random forest, Discrete Bayesian Additive Regression Trees Samplers (DBARTS), Generalized Additive Models (GAM), multivariate adaptive polynomial spline regression (polymars), Recursive Partitioning And Regression Trees (RPART) and Super Learner. Finally, the accuracy of traditional and ML models was compared based on their 10-foldcross-validated AUC (cv-AUC).Results:10-fold cv-AUC for traditional models were 0.79 and 0.78 for M2 and M3, respectively. The 3 best models in the ML algorithm were the GAM, the DBARTS and the Super Learner models, with 10-fold cv-AUC of: 0.77, 0.76 and 0.74, respectively (Table 1).Table 1.Comparison of 10-fold cross-validated AUC between best traditional and machine learning models.Best modelsCross-validated AUCTraditional models M2 (step AIC method)0.79 M3 (LASSO method)0.78Machine learning approach SL Discrete Bayesian Additive Regression Trees Samplers (DBARTS)0.76 SL Generalized Additive Models (GAM)0.77 Super Learner0.74AUC: Area Under the Curve; AIC: Akaike Information Criterion; LASSO: Least Absolute Shrinkage and Selection Operator; SL: SuperLearner. N = 295.Conclusion:Traditional models predicted better radiographic progression than ML models in this early axSpA population. Further ML algorithms image-based or with other artificial intelligence methods (e.g. deep learning) might perform better than traditional models in this setting.Acknowledgments:Thanks to the French National Society of Rheumatology and the DESIR cohort.Disclosure of Interests:Romain Garofoli: None declared, Matthieu resche-rigon: None declared, Maxime Dougados Grant/research support from: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Consultant of: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Speakers bureau: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Désirée van der Heijde Consultant of: AbbVie, Amgen, Astellas, AstraZeneca, BMS, Boehringer Ingelheim, Celgene, Cyxone, Daiichi, Eisai, Eli-Lilly, Galapagos, Gilead Sciences, Inc., Glaxo-Smith-Kline, Janssen, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi, Takeda, UCB Pharma; Director of Imaging Rheumatology BV, Christian Roux: None declared, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florent Le Borgne ◽  
Arthur Chatton ◽  
Maxime Léger ◽  
Rémi Lenain ◽  
Yohann Foucher

AbstractIn clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecification. In this paper, we aimed to propose an approach that combines machine learning and G-computation when both the outcome and the exposure status are binary and is able to deal with small samples. We evaluated the performances of several methods, including penalized logistic regressions, a neural network, a support vector machine, boosted classification and regression trees, and a super learner through simulations. We proposed six different scenarios characterised by various sample sizes, numbers of covariates and relationships between covariates, exposure statuses, and outcomes. We have also illustrated the application of these methods, in which they were used to estimate the efficacy of barbiturates prescribed during the first 24 h of an episode of intracranial hypertension. In the context of GC, for estimating the individual outcome probabilities in two counterfactual worlds, we reported that the super learner tended to outperform the other approaches in terms of both bias and variance, especially for small sample sizes. The support vector machine performed well, but its mean bias was slightly higher than that of the super learner. In the investigated scenarios, G-computation associated with the super learner was a performant method for drawing causal inferences, even from small sample sizes.


Radiology ◽  
2016 ◽  
Vol 281 (3) ◽  
pp. 907-918 ◽  
Author(s):  
Philipp Kickingereder ◽  
David Bonekamp ◽  
Martha Nowosielski ◽  
Annekathrin Kratz ◽  
Martin Sill ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. S173-S174
Author(s):  
Z. Dai ◽  
Y. Zhang ◽  
Q. He ◽  
S. Zhao ◽  
Y. Zhu ◽  
...  

2020 ◽  
Vol 34 (09) ◽  
pp. 13420-13427
Author(s):  
Ange Tato ◽  
Roger Nkambou ◽  
Aude Dufresne

We present a serious game designed to help players/learners develop socio-moral reasoning (SMR) maturity. It is based on an existing computerized task that was converted into a game to improve the motivation of learners. The learner model is computed using a hybrid deep learning architecture, and adaptation rules are provided by both human experts and machine learning techniques. We conducted some experiments with two versions of the game (the initial version and the adaptive version with AI-Based learner modeling). The results show that the adaptive version provides significant better results in terms of learning gain.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 202
Author(s):  
Zhen Chen ◽  
Qian Cheng ◽  
Fuyi Duan ◽  
Xiuqiao Huang ◽  
Honggang Xu ◽  
...  

Winter wheat is a widely-grown cereal crop worldwide. Using growth-stage information to estimate winter wheat yields in a timely manner is essential for accurate crop management and rapid decision-making in sustainable agriculture, and to increase productivity while reducing environmental impact. UAV remote sensing is widely used in precision agriculture due to its flexibility and increased spatial and spectral resolution. Hyperspectral data are used to model crop traits because of their ability to provide continuous rich spectral information and higher spectral fidelity. In this study, hyperspectral image data of the winter wheat crop canopy at the flowering and grain-filling stages was acquired by a low-altitude unmanned aerial vehicle (UAV), and machine learning was used to predict winter wheat yields. Specifically, a large number of spectral indices were extracted from the spectral data, and three feature selection methods, recursive feature elimination (RFE), Boruta feature selection, and the Pearson correlation coefficient (PCC), were used to filter high spectral indices in order to reduce the dimensionality of the data. Four major basic learner models, (1) support vector machine (SVM), (2) Gaussian process (GP), (3) linear ridge regression (LRR), and (4) random forest (RF), were also constructed, and an ensemble machine learning model was developed by combining the four base learner models. The results showed that the SVM yield prediction model, constructed on the basis of the preferred features, performed the best among the base learner models, with an R2 between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was higher than that of each base learner model; moreover, the R2 (0.78) for the yield prediction model based on Boruta’s preferred characteristics was the highest at the grain-filling stage.


Sign in / Sign up

Export Citation Format

Share Document