scholarly journals Tracking genome-editing and associated molecular perturbations by SWATH mass spectrometry

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qifeng Lin ◽  
Larry W. L. Low ◽  
Adam Lau ◽  
Esther W. L. Chua ◽  
Yuji Matsuoka ◽  
...  

Abstract Advances in gene editing now allow reverse genetics to be applied to a broad range of biological systems. Ultimately, any modification to coding sequences requires confirmation at the protein level, although immunoblotting is often hampered by antibody quality or availability especially in non-model species. Sequential Window Acquisition of All Theoretical Spectra (SWATH), a mass spectrometry (MS) technology with exceptional quantitative reproducibility and accuracy, offers an ideal alternative for protein-based confirmation. Here, using genome edits in mouse, zebrafish and Bicyclus anynana butterflies produced using either homologous recombination or targeted nucleases, we demonstrate absence of the targeted proteins using SWATH, thus confirming successful editing. We show that SWATH is a robust antibody-independent alternative for monitoring gene editing at the protein level and broadly applicable across diverse organisms and targeted genome manipulation techniques. Moreover, SWATH concomitantly defines the global proteome response in the edited organism, which may provide pertinent biological insights.

2012 ◽  
Vol 21 (5) ◽  
pp. 1125-1136 ◽  
Author(s):  
Rosalind Brookfield ◽  
Felix Dafhnis-Calas ◽  
Zhengyao Xu ◽  
William Brown

Author(s):  
Dragomir B. Krastev ◽  
Shudong Li ◽  
Yilun Sun ◽  
Andrew J. Wicks ◽  
Gwendoline Hoslett ◽  
...  

AbstractPoly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.


2018 ◽  
Vol 20 (suppl_6) ◽  
pp. vi67-vi67
Author(s):  
Dongyao Yan ◽  
Lauren Schaff ◽  
Fabiola Cecchi ◽  
Steve Benz ◽  
Marc Rosenblum ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yuki Yoshino ◽  
Shino Endo ◽  
Zhenghao Chen ◽  
Huicheng Qi ◽  
Gou Watanabe ◽  
...  

2020 ◽  
Vol 98 (3) ◽  
pp. 314-326 ◽  
Author(s):  
Kathleen M. Attwood ◽  
Jayme Salsman ◽  
Dudley Chung ◽  
Sabateeshan Mathavarajah ◽  
Carter Van Iderstine ◽  
...  

Promyelocytic leukemia nuclear bodies (PML NBs) are nuclear subdomains that respond to genotoxic stress by increasing in number via changes in chromatin structure. However, the role of the PML protein and PML NBs in specific mechanisms of DNA repair has not been fully characterized. Here, we have directly examined the role of PML in homologous recombination (HR) using I-SceI extrachromosomal and chromosome-based homology-directed repair (HDR) assays, and in HDR by CRISPR/Cas9-mediated gene editing. We determined that PML loss can inhibit HR in an extrachromosomal HDR assay but had less of an effect on CRISPR/Cas9-mediated chromosomal HDR. Overexpression of PML also inhibited both CRISPR HDR and I-SceI-induced HDR using a chromosomal reporter, and in an isoform-specific manner. However, the impact of PML overexpression on the chromosomal HDR reporter was dependent on the intranuclear chromosomal positioning of the reporter. Specifically, HDR at the TAP1 gene locus, which is associated with PML NBs, was reduced compared with a locus not associated with a PML NB; yet, HDR could be reduced at the non-PML NB-associated locus by PML overexpression. Thus, both loss and overexpression of PML isoforms can inhibit HDR, and proximity of a chromosomal break to a PML NB can impact HDR efficiency.


2019 ◽  
Vol 61 (1) ◽  
pp. 203-211 ◽  
Author(s):  
S�bastien Carr�re ◽  
Marion Verdenaud ◽  
Clare Gough ◽  
J�r�me Gouzy ◽  
Pascal Gamas

Abstract Medicago truncatula was proposed, about three decades ago, as a model legume to study the Rhizobium-legume symbiosis. It has now been adopted to study a wide range of biological questions, including various developmental processes (in particular root, symbiotic nodule and seed development), symbiotic (nitrogen-fixing and arbuscular mycorrhizal endosymbioses) and pathogenic interactions, as well as responses to abiotic stress. With a number of tools and resources set up in M. truncatula for omics, genetics and reverse genetics approaches, massive amounts of data have been produced, as well as four genome sequence releases. Many of these data were generated with heterogeneous tools, notably for transcriptomics studies, and are consequently difficult to integrate. This issue is addressed by the LeGOO (for Legume Graph-Oriented Organizer) knowledge base (https://www.legoo.org), which finds the correspondence between the multiple identifiers of the same gene. Furthermore, an important goal of LeGOO is to collect and represent biological information from peer-reviewed publications, whatever the technical approaches used to obtain this information. The information is modeled in a graph-oriented database, which enables flexible representation, with currently over 200,000 relations retrieved from 298 publications. LeGOO also provides the user with mining tools, including links to the Mt5.0 genome browser and associated information (on gene functional annotation, expression, methylome, natural diversity and available insertion mutants), as well as tools to navigate through different model species. LeGOO is, therefore, an innovative database that will be useful to the Medicago and legume community to better exploit the wealth of data produced on this model species.


Sign in / Sign up

Export Citation Format

Share Document