scholarly journals Pharmacokinetics of Micafungin in Critically Ill Patients

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Silke Gastine ◽  
Christian Lanckohr ◽  
Magalie Blessou ◽  
Dagmar Horn ◽  
Manfred Fobker ◽  
...  

AbstractWe investigated covariates of pharmacokinetics of micafungin in critically ill patients. After application of micafungin, plasma samples were collected. Non-linear mixed effects modelling (NONMEM 7.3) was used to develop the pharmacokinetic model. Using this model, the adequacy of a fixed 100 mg dosing regimen was evaluated in the study cohort. A two-compartment model with linear elimination was found to describe the obtained data. SOFA score was identified as a significant covariate on both clearance and central volume of distribution, respectively. Patients in highly critical condition, represented by a SOFA above 10 showed a 30.8% lower central volume of distribution than the less critically ill patients. For patients with bilirubin levels above 4 mg/dl, clearance was decreased by 21.1%. Renal replacement therapy (RRT) did not influence micafungin clearance or the volumes of distribution. In a posthoc evaluation of the modeled population, 100 mg micafungin was suitable when assessing the PKPD targets (AUC/MIC) for C. albicans and C. glabrata, with insufficient target attainment for C. parapsilosis. Micafungin pharmacokinetics appear not to be influenced by the status of RRT. A dose of 100 mg micafungin is suitable for infections with C. albicans and C. glabrata in critically ill patients.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1690
Author(s):  
Idoia Bilbao-Meseguer ◽  
Helena Barrasa ◽  
Eduardo Asín-Prieto ◽  
Ana Alarcia-Lacalle ◽  
Alicia Rodríguez-Gascón ◽  
...  

Levetiracetam is a broad-spectrum antiepileptic drug commonly used in intensive care units (ICUs). The objective of this study is to evaluate the adequacy of levetiracetam dosing in patients with normal or augmented renal clearance (ARC) admitted to the ICU by population modelling and simulation. A multicentre prospective study including twenty-seven critically ill patients with urinary creatinine clearance (CrCl) > 50 mL/min and treated with levetiracetam was developed. Levetiracetam plasma concentrations were best described by a two-compartment model. The parameter estimates and relative standard errors (%) were clearance (CL) 3.5 L/h (9%), central volume of distribution (V1) 20.7 L (18%), intercompartmental clearance 31.9 L/h (22%), and peripheral volume of distribution 33.5 L (13%). Interindividual variability estimates were, for the CL, 32.7% (21%) and, for V1, 56.1% (29%). The CrCl showed significant influence over CL. Simulations showed that the administration of at least 500 mg every 8 h or 1000 mg every 12 h are needed in patients with normal renal function. Higher doses (1500 or 2000 mg, every 8 h) are needed in patients with ARC. Critically ill patients with normal or ARC treated with levetiracetam could be at high risk of being underdosed.


Author(s):  
Romain Garreau ◽  
Romain Bricca ◽  
Marie-Claude Gagnieu ◽  
Sandrine Roux ◽  
Anne Conrad ◽  
...  

Abstract Background Daptomycin is increasingly used in the treatment of bone and joint infection (BJI), but its pharmacokinetics (PK) and dosage requirements have not been thoroughly investigated in this indication. Daptomycin may be co-administered with rifampicin, which raises questions about a potential drug interaction. Objectives To investigate the population PK and dosage requirements of daptomycin in patients with BJI, and examine the influence of rifampicin co-administration. Methods A population approach was used to analyse PK data from patients who received daptomycin in our regional reference for BJI. We examined the influence of available covariates, including rifampicin co-administration on daptomycin PK. Simulations performed with the final model investigated the influence of dosages and covariates on PTA for both efficacy and safety. Results A total of 1303 daptomycin concentrations from 183 patients were analysed. A two-compartment model best described the data. Significant intra-individual variability was observed. Daptomycin clearance was influenced by renal function and sex, with females having a 26% lower typical clearance than males. Central volume of distribution (V1) was influenced by body weight, age, sex and rifampicin co-administration. Typical V1 was 11% lower in patients who were co-administered rifampicin. In PK/PD simulations, sex influenced the probability of AUC24/MIC target attainment, while rifampicin had a marginal effect. Conclusions A daptomycin dosage of 8 mg/kg/24 h in women and 10 mg/kg/24 h in men should optimize efficacy but may lead to excessive trough concentrations in many patients, especially in women. Therapeutic drug monitoring appears necessary for precision dosing of daptomycin.


Author(s):  
Mohammad H. Alshaer ◽  
Sylvain Goutelle ◽  
Barbara Santevecchi ◽  
Bethany Shoulders ◽  
Veena Venugopalan ◽  
...  

Cefepime is the second most common cephalosporin used in U.S. hospitals. We aim to develop and validate cefepime population pharmacokinetic (PK) model and integrate into precision dosing tool for implementation. Two datasets (680 patients) were used to build cefepime PK model in Pmetrics, and three datasets (34 patients) were used for the validation. A separate application dataset (115 patients) was used for the implementation and validation of a precision dosing tool. The model support points and covariates were used to generate the optimal initial dose (OID). Cefepime PK was described by a two-compartment model including weight and creatinine clearance (CrCl) as covariates. The median rate of elimination was 0.30 hr −1 (adults) and 0.96 hr −1 (pediatrics), central volume of distribution 13.85 L, and rate of transfer from the central to the peripheral compartments 1.22 hr −1 and from the peripheral to the central compartments 1.38 hr −1 . After integration in BestDose, the observed vs. predicted cefepime concentration fit using the application dataset was excellent (R 2 >0.98) and the median difference between observed and what BestDose predicted in a second occasion was 4%. For OID, cefepime 0.5-1g 4-hour infusion q8-24hr with CrCl<70 mL/min was needed to achieve a target range of free trough:MIC 1-4 at MIC 8 mg/L, while continuous infusion was needed for higher CrCl and weight values. In conclusion, we developed and validated a cefepime model for clinical application. The model was integrated in a precision dosing tool for implementation and the median concentration prediction bias was 4%. OID algorithm was provided.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Amaia Soraluce ◽  
Helena Barrasa ◽  
Eduardo Asín-Prieto ◽  
Jose Ángel Sánchez-Izquierdo ◽  
Javier Maynar ◽  
...  

Antimicrobial treatment in critically ill patients remains challenging. The aim of this study was to develop a population pharmacokinetic model for linezolid in critically ill patients and to evaluate the adequacy of current dosing recommendation (600 mg/12 h). Forty inpatients were included, 23 of whom were subjected to continuous renal replacement therapies (CRRT). Blood and effluent samples were drawn after linezolid administration at defined time points, and linezolid levels were measured. A population pharmacokinetic model was developed, using NONMEM 7.3. The percentage of patients that achieved the pharmacokinetic/pharmacodynamic (PK/PD) targets was calculated (AUC24/MIC > 80 and 100% T>MIC). A two-compartment model best described the pharmacokinetics of linezolid. Elimination was conditioned by the creatinine clearance and by the extra-corporeal clearance if the patient was subjected to CRRT. For most patients, the standard dose of linezolid did not cover infections caused by pathogens with MIC ≥ 2 mg/L. Continuous infusion may be an alternative, especially when renal function is preserved.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 612
Author(s):  
Annabel Werumeus Buning ◽  
Caspar J. Hodiamont ◽  
Natalia M. Lechner ◽  
Margriet Schokkin ◽  
Paul W. G. Elbers ◽  
...  

Altered pharmacokinetics (PK) of hydrophilic antibiotics in critically ill patients is common, with possible consequences for efficacy and resistance. We aimed to describe ceftazidime population PK in critically ill patients with a proven or suspected Pseudomonas aeruginosa infection and to establish optimal dosing. Blood samples were collected for ceftazidime concentration measurement. A population PK model was constructed, and probability of target attainment (PTA) was assessed for targets 100% T > MIC and 100% T > 4 × MIC in the first 24 h. Ninety-six patients yielded 368 ceftazidime concentrations. In a one-compartment model, variability in ceftazidime clearance (CL) showed association with CVVH. For patients not receiving CVVH, variability in ceftazidime CL was 103.4% and showed positive associations with creatinine clearance and with the comorbidities hematologic malignancy, trauma or head injury, explaining 65.2% of variability. For patients treated for at least 24 h and assuming a worst-case MIC of 8 mg/L, PTA was 77% for 100% T > MIC and 14% for 100% T > 4 × MIC. Patients receiving loading doses before continuous infusion demonstrated higher PTA than patients who did not (100% T > MIC: 95% (n = 65) vs. 13% (n = 15); p < 0.001 and 100% T > 4 × MIC: 20% vs. 0%; p = 0.058). The considerable IIV in ceftazidime PK in ICU patients could largely be explained by renal function, CVVH use and several comorbidities. Critically ill patients are at risk for underexposure to ceftazidime when empirically aiming for the breakpoint MIC for P. aeruginosa. A loading dose is recommended.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Susanna Edith Medellín-Garibay ◽  
Silvia Romano-Moreno ◽  
Pilar Tejedor-Prado ◽  
Noelia Rubio-Álvaro ◽  
Aida Rueda-Naharro ◽  
...  

ABSTRACT Pathophysiological changes involved in drug disposition in critically ill patients should be considered in order to optimize the dosing of vancomycin administered by continuous infusion, and certain strategies must be applied to reach therapeutic targets on the first day of treatment. The aim of this study was to develop a population pharmacokinetic model of vancomycin to determine clinical covariates, including mechanical ventilation, that influence the wide variability of this antimicrobial. Plasma vancomycin concentrations from 54 critically ill patients were analyzed simultaneously by a population pharmacokinetic approach. A nomogram for dosing recommendations was developed and was internally evaluated through stochastic simulations. The plasma vancomycin concentration-versus-time data were best described by a one-compartment open model with exponential interindividual variability associated with vancomycin clearance and the volume of distribution. Residual error followed a homoscedastic trend. Creatinine clearance and body weight significantly dropped the objective function value, showing their influence on vancomycin clearance and the volume of distribution, respectively. Characterization based on the presence of mechanical ventilation demonstrated a 20% decrease in vancomycin clearance. External validation (n = 18) was performed to evaluate the predictive ability of the model; median bias and precision values were 0.7 mg/liter (95% confidence interval [CI], −0.4, 1.7) and 5.9 mg/liter (95% CI, 5.4, 6.4), respectively. A population pharmacokinetic model was developed for the administration of vancomycin by continuous infusion to critically ill patients, demonstrating the influence of creatinine clearance and mechanical ventilation on vancomycin clearance, as well as the implications for targeting dosing rates to reach the therapeutic range (20 to 30 mg/liter).


2009 ◽  
Vol 53 (8) ◽  
pp. 3430-3436 ◽  
Author(s):  
D. Plachouras ◽  
M. Karvanen ◽  
L. E. Friberg ◽  
E. Papadomichelakis ◽  
A. Antoniadou ◽  
...  

ABSTRACT Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. The aim of the present study was to characterize the pharmacokinetics of CMS and colistin in a population of critically ill patients. Patients receiving colistin for the treatment of infections caused by MDR-GNB were enrolled in the study; however, patients receiving a renal replacement therapy were excluded. CMS was administered at a dose of 3 million units (240 mg) every 8 h. Venous blood was collected immediately before and at multiple occasions after the first and the fourth infusions. Plasma CMS and colistin concentrations were determined by a novel liquid chromatography-tandem mass spectrometry method after a rapid precipitation step that avoids the significant degradation of CMS and colistin. Population pharmacokinetic analysis was performed with the NONMEM program. Eighteen patients (6 females; mean age, 63.6 years; mean creatinine clearance, 82.3 ml/min) were included in the study. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.046 h and 2.3 h, respectively. The clearance of CMS was 13.7 liters/h. For colistin, a one-compartment model was sufficient to describe the data, and the estimated half-life was 14.4 h. The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.


2022 ◽  
Author(s):  
Seyedeh Sana Khezrnia ◽  
Bita Shahrami ◽  
Mohammad Reza Rouini ◽  
Atabak Najafi ◽  
Hamid Reza Sharifnia ◽  
...  

Phenobarbital is still one of the drugs of choice in managing patients with brain injury in the intensive care unit (ICU). However, the impact of acute physiological changes on phenobarbital pharmacokinetic parameters is not well studied. This study aimed to evaluate the pharmacokinetic parameters of parenteral phenobarbital in critically ill patients with brain injury. Patients with severe traumatic or non-traumatic brain injury at high risk of seizure were included and followed for seven days. All patients initially received phenobarbital as a loading dose of 15 mg/kg over 30-minutes infusion, followed by 2 mg/kg/day divided into three doses. Blood samples were obtained on the first and fourth day of study at 1, 2, 5, 8, and 10 hours after the end of the infusion. Serum concentrations of phenobarbital were measured by high-pressure liquid chromatography (HPLC) with an ultraviolet (UV) detector. Pharmacokinetic parameters, including the volume of distribution (Vd), half-life (t1/2), and the drug clearance (CL), were provided by MonolixSuite 2019R1 software using stochastic approximation expectation-maximization (SAEM) algorithm and compared with previously reported parameters in healthy volunteers. Data from seventeen patients were analyzed. The mean value±standard deviation of pharmacokinetic parameters was calculated as follows: Vd: 0.81±0.15 L/kg; t1/2: 6.16±2.66 days; CL: 4.23±1.51 ml/kg/h. CL and Vd were significantly lower and higher than the normal population with the value of 5.6 ml/kg/h (P=0.002) and 0.7 L/kg (P=0.01), respectively. Pharmacokinetic behavior of phenobarbital may change significantly in critically ill brain-injured patients. This study affirms the value of early phenobarbital therapeutic drug monitoring (TDM) to achieve therapeutic goals.


2020 ◽  
Vol 75 (11) ◽  
pp. 3260-3268
Author(s):  
Semra Palić ◽  
Anke E Kip ◽  
Jos H Beijnen ◽  
Jane Mbui ◽  
Ahmed Musa ◽  
...  

Abstract Background Conventional miltefosine dosing (2.5 mg/kg/day) for treatment of visceral leishmaniasis (VL) is less effective in children than in adults. A higher allometric dose (median 3.2 mg/kg/day) was therefore investigated in paediatric VL patients in Eastern Africa. Results of this trial showed an unforeseen, lower than dose-proportional increase in exposure. Therefore, we performed a pooled model-based analysis of the paediatric data available from both dosing regimens to characterize observed non-linearities in miltefosine pharmacokinetics (PK). Methods Fifty-one children with VL were included in this analysis, treated with either a conventional (n = 21) or allometric (n = 30) miltefosine dosing regimen. PK data were analysed using non-linear mixed-effects modelling. Results A two-compartment model following first-order absorption and linear elimination, with two separate effects on relative oral bioavailability, was found to fit these data best. A 69% lower bioavailability at treatment start was estimated, presumably due to initial malnourishment and malabsorption. Stagnation in miltefosine accumulation in plasma, hampering increased drug exposure, was related to the increase in cumulative dose (mg/kg/day). However, the allometric regimen increased exposure 1.7-fold in the first treatment week and reduced the time to reach the PK target by 17.4%. Conclusions Miltefosine PK in children suffering from VL are characterized by dose-dependent non-linearities that obstruct the initially expected exposure levels. Bioavailability appeared to be affected by the cumulative dose, possibly as a consequence of impaired absorption. Despite this, allometric dosing led to a faster target achievement and increased exposure compared with conventional dosing.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Vibeke Klastrup ◽  
Anders Thorsted ◽  
Merete Storgaard ◽  
Steffen Christensen ◽  
Lena E. Friberg ◽  
...  

ABSTRACT Pharmacokinetic changes are often seen in patients with severe infections. Administration by continuous infusion has been suggested to optimize antibiotic exposure and pharmacokinetic/pharmacodynamic (PK/PD) target attainment for β-lactams. In an observational study, unbound piperacillin concentrations (n = 196) were assessed in 78 critically ill patients following continuous infusion of piperacillin-tazobactam (ratio 8:1). The initial dose of 8, 12, or 16 g (piperacillin component) was determined by individual creatinine clearance (CRCL). Piperacillin concentrations were compared to the EUCAST clinical breakpoint MIC for Pseudomonas aeruginosa (16 mg/liter), and the following PK/PD targets were evaluated: 100% free time (fT) > 1× MIC and 100% fT > 4× MIC. A population pharmacokinetic model was developed using NONMEM 7.4.3 consisting of a one-compartment disposition model with linear elimination separated into nonrenal and renal (linearly increasing with patient CRCL) clearances. Target attainment was predicted and visualized for all individuals based on the utilized CRCL dosing algorithm. The target of 100% fT > 1× MIC was achieved for all patients based on the administered dose, but few patients achieved the target of 100% fT > 4× MIC. Probability of target attainment for a simulated cohort of patients showed that increasing the daily dose by 4-g increments (piperacillin component) did not result in substantially improved target attainment for the 100% fT > 4× MIC target. To conclude, in patients with high CRCL combined with high-MIC bacterial infections, even a continuous infusion (CI) regimen with a daily dose of 24 g may be insufficient to achieve therapeutic concentrations.


Sign in / Sign up

Export Citation Format

Share Document