scholarly journals Quantitative background parenchymal enhancement to predict recurrence after neoadjuvant chemotherapy for breast cancer

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sebastien Moliere ◽  
Isabelle Oddou ◽  
Vincent Noblet ◽  
Francis Veillon ◽  
Carole Mathelin

AbstractBreast background parenchymal enhancement (BPE) is an increasingly studied MRI parameter that reflects the microvasculature of normal breast tissue, which has been shown to change during neoadjuvant chemotherapy (NAC) for breast cancer. We aimed at evaluating the BPE in patients undergoing NAC and its prognostic value to predict recurrence. MRI BPE was visually and quantitatively evaluated before and after NAC in a retrospective cohort of 102 women with unilateral biopsy-proven invasive breast cancer. Pre-therapeutic BPE was not predictive of pathological response or recurrence. Quantitative post-therapeutic BPE was significantly decreased compared to pre-therapeutic value. Post-therapeutic quantitative BPE significantly predicted recurrence (HR = 6.38 (0.71, 12.06), p < 0.05).

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
L. Losurdo ◽  
T. M. A. Basile ◽  
A. Fanizzi ◽  
R. Bellotti ◽  
U. Bottigli ◽  
...  

Breast cancer is the main cause of female malignancy worldwide. Effective early detection by imaging studies remains critical to decrease mortality rates, particularly in women at high risk for developing breast cancer. Breast Magnetic Resonance Imaging (MRI) is a common diagnostic tool in the management of breast diseases, especially for high-risk women. However, during this examination, both normal and abnormal breast tissues enhance after contrast material administration. Specifically, the normal breast tissue enhancement is known as background parenchymal enhancement: it may represent breast activity and depends on several factors, varying in degree and distribution in different patients as well as in the same patient over time. While a light degree of normal breast tissue enhancement generally causes no interpretative difficulties, a higher degree may cause difficulty to detect and classify breast lesions at Magnetic Resonance Imaging even for experienced radiologists. In this work, we intend to investigate the exploitation of some statistical measurements to automatically characterize the enhancement trend of the whole breast area in both normal and abnormal tissues independently from the presence of a background parenchymal enhancement thus to provide a diagnostic support tool for radiologists in the MRI analysis.


2020 ◽  
Vol 53 (2) ◽  
pp. 95-104
Author(s):  
Sandra Regina Campos Teixeira ◽  
Hélio Sebastião Amâncio de Camargo Júnior ◽  
Cesar Cabello

Abstract Objective: To evaluate background parenchymal enhancement (BPE) and its characteristics, as well as its behavior before and after neoadjuvant chemotherapy (NAC), in both breasts of patients with unilateral breast cancer. Materials and Methods: This was a retrospective, cross-sectional observational study involving a consecutive sample of women with invasive breast cancer who underwent breast magnetic resonance imaging (MRI) between July 2007 and July 2017, as well as undergoing dynamic contrast-enhanced MRI before and after NAC. In both breasts, we evaluated the BPE in accordance with the Breast Imaging Reporting and Data System. We applied logistic regression analysis, and values of p < 0.05 were considered significant. Results: We evaluated 150 women. The mean age was 45.2 years (range, 20-74 years). The variables correlating independently with a high pre-NAC BPE, in the affected and contralateral breasts, were being under 50 years of age (odds ratio [OR] = 6.55; 95% confidence interval [95% CI]: 2.32-18.46, for both breasts) and a post-NAC BPE reduction (OR = 17.75; 95% CI: 4.94-63.73 and OR = 18.47; 95% CI: 5.19-66.49, respectively). Conclusion: Patients with invasive unilateral breast cancer who have a high pre-NAC BPE in both breasts tend to be under 50 years of age and to show a post-NAC reduction in BPE.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shoghag Panjarian ◽  
Jozef Madzo ◽  
Kelsey Keith ◽  
Carolyn M. Slater ◽  
Carmen Sapienza ◽  
...  

Abstract Background DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. Methods We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. Results We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. Conclusions A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


2020 ◽  
Author(s):  
Toshiaki Akahane ◽  
Naoki Kanomata ◽  
Oi Harada ◽  
Tetsumasa Yamashita ◽  
Junichi Kurebayashi ◽  
...  

Abstract Background: Next-generation sequencing (NGS) has shown that recurrent/metastatic breast cancer lesions may have additional genetic changes compared with the primary tumor. These additional changes may be related to tumor progression and/or drug resistance. However, breast cancer-targeted NGS is not still widely used in clinical practice to compare the genomic profiles of primary breast cancer and recurrent/metastatic lesions.Methods: Triplet samples of genomic DNA were extracted from each patient’s normal breast tissue, primary breast cancer, and recurrent/metastatic lesion(s). A DNA library was constructed using the QIAseq Human Breast Cancer Panel (93 genes, Qiagen) and then sequenced using MiSeq (Illumina). The Qiagen web portal was utilized for data analysis.Results: Successful results for three or four samples (normal breast tissue, primary tumor, and at least one metastatic/recurrent lesion) were obtained for 11 of 35 breast cancer patients with recurrence/metastases (36 samples). We detected shared somatic mutations in all but one patient, who had a germline mutation in TP53. Additional mutations that were detected in recurrent/metastatic lesions compared with primary tumor were in genes including TP53 (three patients) and one case each of ATR, BLM, CBFB, EP300, ERBB2, MUC16, PBRM1, and PIK3CA. Actionable mutations and/or copy number variations (CNVs) were detected in 73% (8/11) of recurrent/metastatic breast cancer lesions.Conclusions: The QIAseq Human Breast Cancer Panel assay showed that recurrent/metastatic breast cancers sometimes acquired additional mutations and CNV. Such additional genomic changes could provide therapeutic target.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3088 ◽  
Author(s):  
Kaoutar Ennour-Idrissi ◽  
Dzevka Dragic ◽  
Elissar Issa ◽  
Annick Michaud ◽  
Sue-Ling Chang ◽  
...  

Differential DNA methylation is a potential marker of breast cancer risk. Few studies have investigated DNA methylation changes in normal breast tissue and were largely confounded by cancer field effects. To detect methylation changes in normal breast epithelium that are causally associated with breast cancer occurrence, we used a nested case–control study design based on a prospective cohort of patients diagnosed with a primary invasive hormone receptor-positive breast cancer. Twenty patients diagnosed with a contralateral breast cancer (CBC) were matched (1:1) with 20 patients who did not develop a CBC on relevant risk factors. Differentially methylated Cytosine-phosphate-Guanines (CpGs) and regions in normal breast epithelium were identified using an epigenome-wide DNA methylation assay and robust linear regressions. Analyses were replicated in two independent sets of normal breast tissue and blood. We identified 7315 CpGs (FDR < 0.05), 52 passing strict Bonferroni correction (p < 1.22 × 10−7) and 43 mapping to known genes involved in metabolic diseases with significant enrichment (p < 0.01) of pathways involving fatty acids metabolic processes. Four differentially methylated genes were detected in both site-specific and regions analyses (LHX2, TFAP2B, JAKMIP1, SEPT9), and three genes overlapped all three datasets (POM121L2, KCNQ1, CLEC4C). Once validated, the seven differentially methylated genes distinguishing women who developed and who did not develop a sporadic breast cancer could be used to enhance breast cancer risk-stratification, and allow implementation of targeted screening and preventive strategies that would ultimately improve breast cancer prognosis.


Sign in / Sign up

Export Citation Format

Share Document