scholarly journals A new primate from the late Eocene of Vietnam illuminates unexpected strepsirrhine diversity and evolution in Southeast Asia

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olivier Chavasseau ◽  
Yaowalak Chaimanee ◽  
Stéphane Ducrocq ◽  
Vincent Lazzari ◽  
Phan Dong Pha ◽  
...  

AbstractSivaladapidae is a poorly known Asian strepsirrhine family originally discovered in Miocene sediments of the Indian subcontinent. Subsequent research has considerably increased the diversity, temporal range, and geographical distribution of this group, now documented from China, Thailand, Myanmar, Pakistan, and India and whose earliest representatives date back to the Middle Eocene. We present here a new taxon of sivaladapid from the Na Duong coal mine in the Latest Middle Eocene-Late Eocene of Vietnam. It represents the first Eocene primate from Vietnam and the first medium-sized mammal recovered from this locality, thus documenting a completely new part of the Na Duong paleobiodiversity. This taxon is the largest sivaladapid ever found with an estimated body weight of 5.3 kg and it represents a new subfamily of sivaladapids in exhibiting a very peculiar combination of dental features yet unknown in the fossil record of the family (e.g., retention of four premolars, high-crowned molars with accentuated bunodonty and extreme crest reduction). Besides documenting a complete new part of sivaladapid evolution, its primitive dental formula and derived features shared with the Early Eocene Asiadapidae reinforce the hypothesis of a basal branching of sivaladapids among strepsirrhines.

Zootaxa ◽  
2020 ◽  
Vol 4838 (1) ◽  
pp. 137-142
Author(s):  
PRIYA AGNIHOTRI ◽  
KAJAL CHANDRA ◽  
ANUMEHA SHUKLA ◽  
HUKAM SINGH ◽  
RAKESH C. MEHROTRA

A fossil of a mayfly nymph that shows similarities with the modern genus Teloganella Ulmer, 1939 of the family Teloganellidae is recorded for the first time from the Indian subcontinent. It is systematically described from the Gurha lignite mine of Bikaner, Rajasthan which belongs to the Palana Formation (late Paleocene-early Eocene). As assignment of the fossil to a modern species of Teloganella is difficult due to indistinguishable location of gills in the impression, a new species, Teloganella gurhaensis Agnihotri et al., sp. nov. is instituted to include this fossil naiad resembling the extant Teloganella. 


2020 ◽  
Vol 8 ◽  
Author(s):  
Grace Musser ◽  
Julia A. Clarke

The stem lineage relationships and early phenotypic evolution of Charadriiformes (shorebirds) and Gruiformes (rails, cranes, and allies) remain unresolved. It is still debated whether these clades are sister-taxa. New phylogenetic analyses incorporating Paleogene fossils have the potential to reveal the evolutionary connections of these two speciose and evolutionarily critical neoavian subclades. Although Gruiformes have a rich Paleogene fossil record, most of these fossils have not been robustly placed. The Paleogene fossil record of Charadriiformes is scarce and largely consists of fragmentary single elements. Only one proposed Eocene charadriiform-like taxon, Scandiavis mikkelseni of Denmark, is represented by a partial skeleton. Here, we describe a new species from the early Eocene Green River Formation of North America comprising a partial skeleton and feather remains. Because the skeleton lacks the pectoral girdle and forelimbs as in S. mikkelseni, only features of the skull, axial skeleton, and hind limb are available to resolve the phylogenetic placement of this taxon. These anatomical subregions initially showed features seen in Charadriiformes and Gruiformes. To assess placement of this taxon, we use a matrix consisting of 693 morphological characters and 60 taxa, including S. mikkelseni and the oldest known charadriiform taxa represented by single elements. These more fragmentary records comprise two distal humeri from the earliest Eocene Naranbulag Formation of Mongolia and the early Eocene Nanjemoy Formation of Virginia. Our phylogenetic analyses recover the new taxon and S. mikkelseni alternatively as a charadriiform or as a stem-gruiform; placement is contingent upon enforced relationships for major neoavian subclades recovered by recent molecular-based phylogenies. Specifically, when constraint trees based on results that do not recover Charadriiformes and Gruiformes as sister-taxa are used, the new taxon and S. mikkelseni are recovered within stem Gruiformes. Both Paleogene fossil humeri are consistently recovered within crown Charadriiformes. If placement of these humeri or the new taxon as charadriiforms are correct, this may indicate that recent divergence time analyses have underestimated the crown age of another major crown avian subclade; however, more complete sampling of these taxa is necessary, especially of more complete specimens with pectoral elements.


2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


2010 ◽  
Vol 44 (6) ◽  
pp. e-49-e-51 ◽  
Author(s):  
N. Kuznetsov ◽  
A. Khaustov ◽  
E. Perkovsky

First Record of Mites of the Family Stigmaeidae (Acari, Raphignathoidea) from Rovno Amber with Description of a New Species of the Genus Mediolata A new species, Mediolata eocenica Kuznetsov, Khaustov et Perkovsky, sp. n., is described from the Late Eocene Rovno amber. It is the first fossil record of Stigmaeidae.


2021 ◽  
Author(s):  
Vlasta Ćosović ◽  
Jelena Španiček ◽  
Katica Drobne ◽  
Ervin Mrinjek

&lt;p&gt;The Paleogene Adriatic carbonate platform(s) existed within the Central NeoTethys (around 32 N paleolatitude) from the Danian to the late Eocene (Bartonian/Priabonian) and produced a succession of limestones up to 500 m thick, rich in larger benthic foraminifera (LBF). The Eocene sediments are widely distributed along the eastern Adriatic coast and have been studied for many years. Taking into account the climatic changes that took place within the Eocene (Early Eocene and Middle Eocene climatic optima, known as EECO, MECO), special attention was paid to the composition of shallow-marine foraminiferal assemblages. The studies reveal the following trends: (1) the alveolinid-dominated assemblages were replaced by nummulitid-dominated assemblages around the MECO; (2) the greater species and morphological diversity (spherical, ellipsoid, extremely elongated fusiform) of the alveolinid fauna was evident at the EECO; (3) the nummulitid-dominated fauna was characterized by less diversified assemblages compared to the alveolinid ones and by the co-occurrence of scleractinian corals, coralline red algae and aborescent foraminifera. The occurrence of twin embryos has been assigned to the early Eocene in the alveolinid populations, especially in Alveolina levantina and A. axiampla (in some sections, the frequency is greater than 5%), and these coalesced embryos have the same size as the single form (usually they are smaller). The LBF assemblages of Middle Eocene showed a greater frequency of doubled adult tests (Orbitolites sp., Nummulites sp.). The origin of these unusual morphologies is poorly known, usually described as the results of stressful conditions. Considering the timing of the appearance of such morphologies, temperature and associated changes in the shallow-marine environment could be the cause.&lt;/p&gt;&lt;p&gt;This study is carried out as part of the scientific project IP-2019-04-5775 BREEMECO, funded by Croatian Scientific Foundation.&lt;/p&gt;


2001 ◽  
Vol 49 (2) ◽  
pp. 221 ◽  
Author(s):  
Helene A. Martin

A study of fossil and modern pollen of the family Convolvulaceae is presented and five fossil types are identified. Two types, one a large tricolpate of the form species Perfotricolpites digitatus, with similarities to Convolvulus, Operculina and probably other genera, and the second, a small tricolpate, Tricolpites trioblatus, with affinities to Wilsonia and possibly Cressa, first appear in the late Eocene of southern Australia. Fossil pollen is found worldwide, with the oldest occurrence being Calystegiapollis microechinatus from the early Eocene of Africa. Perfotricolpites digitatus first appears in the mid-Eocene of Brazil, and specimens similar to P. digitatus from Antarctica suggest that it migrated into Australia by the Antarctic route. Wilsonia is endemic to Australia today, but it was in New Zealand in the mid–late Miocene.


2011 ◽  
Vol 149 (1) ◽  
pp. 80-92 ◽  
Author(s):  
M. J. ORLIAC ◽  
S. DUCROCQ

AbstractRaoellidae are small fossil cetartiodactyls closely related to the Cetacea. Until now undisputable raoellid remains were reported only from the early Middle Eocene of the Indian Subcontinent, although this Indo-Pakistani endemism has been challenged by several recent works describing potential raoellids from Mongolia, Myanmar and China. In this contribution we address the question of raoellid taxonomic content and definition, through a revision of the dental features of the family. This work, which includes a revision of the putative raoellid material from outside Indo-Pakistan, is primarily based on a re-examination of ‘suoid’ specimens from Shanghuang (Middle Eocene, coastal China). Our results indicate that the Shanghuang material both substantiates the youngest and easternmost occurrence of Raoellidae and represents the only unquestionable record of raoellids outside the Indian Subcontinent at present. This significantly extends the geographical and chronological range of the family. The occurrence of a raoellid species in the Middle Eocene of coastal China implies that raoellids dispersed from the Indian Subcontinent to eastern Asia during Early or Middle Eocene time. This tempers classical hypotheses of Middle Eocene Indian endemism and eastern Asian provincialism.


2021 ◽  
Author(s):  
◽  
Kristina Michaela Pascher

<p>This thesis investigates the effect of climatic and oceanographic changes on the distribution of fossil radiolarian assemblages from the early Eocene to early Oligocene (~56–30 Ma) in the Southwest Pacific. Radiolarian assemblages have been analysed from a series of archived cores collected by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP). The selected cores form a latitudinal transect designed to investigate the ecological change associated with the transition from the warm ‘greenhouse’ climate of the Eocene into the cooler Oligocene, when continental-scale glaciation is believed to have intiated in Antarctica. High-latitude sites were sampled on the Campbell Plateau (DSDP Site 277), Tasman Rise (DSDP sites 280 and 281) and the Tasman Sea (DSDP Site 283 and ODP Site 1172), while mid-latitude sites were sampled both to the west of New Zealand (DSDP sites 207, 206, 592) and east of New Zealand (ODP Site 1123). New foraminifer oxygen (δ¹⁸O) and carbon (δ¹³C) stable isotope data from DSDP sites 277, 207 and 592 are presented and provide additional age control and insights in the climatic and oceanographic changes in the Southwest Pacific during the early Eocene to early Oligocene.  This thesis contributes a comprehensive taxonomic review of Eocene radiolarian taxa with the intention of standardising nomenclature and to resolve synonymies. 213 out of 259 counting groups have been reviewed and assigned to species or subspecies level and 7 new species are yet to be described. All sites have been correlated to the Southern Hemisphere radiolarian zonation, from the upper Paleocene to upper Oligocene (RP6SH to RP17SH). Alternative datums for the base of RP10SH (LO of Artobotrys auriculaleporis) and the base of RP12SH (LO of Lophocyrtis longiventer) are proposed.  The early Eocene climatic optimum (EECO, ~53–49 Ma) can be identified by a negative excursion in foraminiferal δ¹⁸O values at Site 207. The radiolarian assemblages at sites 207 (paleolatitude ~46°S) and 277 (paleolatitude ~55°S) during the EECO are dominated by taxa with low-latitude affinities (Amphicraspedum spp. represents up to 89% of total fauna), but many typical low-latitude genera (e.g. Thyrsocyrtis, Podocyrtis, Phormocyrtis) are absent. Following the EECO, low-latitude taxa decrease at Site 207 and disappear at Site 277. Radiolarians are abundant and very diverse at mid-latitude sites 207 and 206 (paleolatitude ~42°S) during the middle Eocene, and low-latitude taxa are common (up to ~15% of the total fauna at Site 207 and ~10% at Site 206). The middle Eocene climatic optimum (MECO, ~40 Ma), although truncated by poor drilling recovery at Site 277, is identified by a negative shift in foraminiferal δ18O values at this site and is associated by a small increase in radiolarian taxa with low-latitude affinities (up to ~5% of total fauna).  Early in the late Eocene (~37 Ma), a positive shift in δ¹⁸O values at Site 277 is correlated with the Priabonian oxygen isotope maximum (PrOM). Within this cooling event, radiolarian abundance, diversity and preservation, as well as diatom abundance, increase abruptly at Site 277. A negative δ¹⁸O excursion above the PrOM is correlated to a late Eocene warming event (~36 Ma) and is referred to as the late Eocene climatic optimum (LECO). The LECO is identified using stable isotopes at sites 277 and 592. Radiolarian abundance and diversity decline within this event at Site 277 although taxa with low-latitude affinities increase (up to ~10% of total fauna). At Site 592, radiolarian-bearing sediments are only present during this event with up to ~6% low-latitude taxa. Apart from the LECO, late Eocene radiolarian assemblages at Site 277 are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and Oligocene (~38–27 Ma) at DSDP sites 280, 281, 283, and ODP sites 1172 and 1123 and are associated with very high diatom abundance.  Radiolarian assemblages are used for reconstructing the evolution of oceanic fronts. The composition of the assemblages suggests that the oscillation between warm subtropical and cool subtropical conditions can be explained by the varying influence of the warm proto-East Australian Current and cold proto-Ross Gyre. In contrast to temperature reconstructions based on geochemical proxies (TEX₈₆, UK’₃₇ and Mg/Ca), which indicate tropical temperatures throughout most of the Eocene, radiolarians indicate warm subtropical conditions during the EECO. Warm surface water masses may have been transported by the proto-East Australian Current to ~55°S during the EECO. During the middle to late Eocene, cool subtropical conditions prevailed in the Southwest Pacific. Localised occurrences of abundant diatoms indicate upwelling areas close to the Tasman Rise in the middle Eocene. The proliferation of radiolarian assemblages and expansion of high-latitude taxa onto the Campbell Plateau in the latest Eocene is explained by a northward expansion of proto-Ross Gyre. In the early Oligocene (~32 Ma), there is an overall decrease in radiolarian abundance and diversity on the Campbell Plateau (Site 277) and diatoms disappear. Major hiatuses in the region indicate intensified bottom-water currents associated with the establishment of the Antarctic Circumpolar Current. A frontal system similar to present day developed in the early Oligocene, with nutrient-depleted subantarctic waters bathing the southern Campbell Plateau, resulting in a more restricted radiolarian assemblage at Site 277.</p>


ZooKeys ◽  
2021 ◽  
Vol 1071 ◽  
pp. 49-61
Author(s):  
Hannah M. Wood ◽  
Hukam Singh ◽  
David A. Grimaldi

The first fossil Archaeidae in Cambay amber from India, of Eocene age, is documented. The inclusion is a spider exuvium and is placed as Myrmecarchaea based on the presence of elongated legs, a slightly elongated pedicel with lateral spurs, and a diastema between coxae III and IV that is similar to M. antecessor from Oise amber. The previous occurrences of the genus are from Baltic and Oise amber, both of Eocene age. Because most spiders, including Archaeidae, only molt as juveniles, the exuvium does not have adult features nor have distinct species-specific features, and a new taxon is not erected. This new record further extends the distribution of the family and genus to India 50–52 million years ago. Myrmecarchaea in Indian Cambay amber provides additional evidence that India in the Early Eocene had affinities with the Palearctic mainland rather than showing Gondwanan insularity.


Sign in / Sign up

Export Citation Format

Share Document