scholarly journals Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuan-Nam Bui ◽  
Hoang Nguyen ◽  
Yosoon Choi ◽  
Trung Nguyen-Thoi ◽  
Jian Zhou ◽  
...  
2020 ◽  
Vol 61 (6) ◽  
pp. 22-29
Author(s):  
Hoang Nguyen . ◽  

Blasting is considered as one of the most effective methods for rock fragmentation in open - pit mines. However, its side effects are significant, especially blast - induced ground vibration. Therefore, this study aims to develop and apply artificial intelligence in predicting blast - induced ground vibration in open - pit mines. Indeed, the k - nearest neighbors (KNN) algorithm was taken into account and developed for predicting blast - induced ground vibration at the Deo Nai open - pit coal mine (Vietnam) as a case study. An empirical model (i.e., USBM) was also developed to compare with the developed KNN model aiming to highlight the advantage of the KNN model. Accordingly, 194 blasting events were collected and analyzed for this aim. This database was then divided into two parts, 80% for training and 20% for testing. The MinMax scale and 10 - fold cross - validation techniques were applied to improve the accuracy, as well as avoid overfitting of the KNN model. Root - mean - squared error (RMSE) and determination coefficient (R2) were used as the performance metrics for models’ evaluation and comparison purposes. The results indicated that the KNN model yielded better superior performance than those of the USBM empirical model with an RMSE of 1.157 and R2 of 0.967. In contrast, the USBM model only provided a weak performance with an RMSE of 4.205 and R2 of 0.416. With the obtained results, the KNN can be introduced as a potential artificial intelligence model for predicting and controlling blast - induced ground vibration in practical engineering, especially at the Deo Nai open - pit coal mine.


2019 ◽  
Vol 9 (14) ◽  
pp. 2806 ◽  
Author(s):  
Xuan-Nam Bui ◽  
Chang Woo Lee ◽  
Hoang Nguyen ◽  
Hoang-Bac Bui ◽  
Nguyen Quoc Long ◽  
...  

Dust is one of the components causing heavy environmental pollution in open-pit mines, especially PM10. Some pathologies related to the lung, respiratory system, and occupational diseases have been identified due to the effects of PM10 in open-pit mines. Therefore, the prediction and control of PM10 concentration in the production process are necessary for environmental and health protection. In this study, PM10 concentration from drilling operations in the Coc Sau open-pit coal mine (Vietnam) was investigated and considered through a database including 245 datasets collected. A novel hybrid artificial intelligence model was developed based on support vector regression (SVR) and a swarm optimization algorithm (i.e., particle swarm optimization (PSO)), namely PSO-SVR, for estimating PM10 concentration from drilling operations at the mine. Polynomial (P), radial basis function (RBF), and linear (L) kernel functions were considered and applied to the development of the PSO-SVR models in the present study, abbreviated as PSO-SVR-P, PSO-SVR-RBF, and PSO-SVR-L. Also, three benchmark artificial intelligence techniques, such as k-nearest neighbors (KNN), random forest (RF), and classification and regression trees (CART), were applied and developed for estimating PM10 concentration and then compared with the PSO-SVR models. Root-mean-squared error (RMSE) and determination coefficient (R2) were used as the statistical criteria for evaluating the performance of the developed models. The results exhibited that the PSO algorithm had an essential role in the optimization of the hyper-parameters of the SVR models. The PSO-SVR models (i.e., PSO-SVR-L, PSO-SVR-P, and PSO-SVR-RBF) had higher performance levels than the other models (i.e., RF, CART, and KNN) with an RMSE of 0.040, 0.042, and 0.043; and R2 of 0.954, 0.948, and 0.946; for the PSO-SVR-L, PSO-SVR-P, and PSO-SVR-RBF models, respectively. Of these PSO-SVR models, the PSO-SVR-L model was the most dominant model with an RMSE of 0.040 and R2 of 0.954. The remaining three benchmark models (i.e., RF, CART, and KNN) yielded a more unsatisfactory performance with an RMSE of 0.060, 0.052, and 0.067; and R2 of 0.894, 0.924, and 0.867, for the RF, CART, and KNN models, respectively. Furthermore, the findings of this study demonstrated that the density of rock mass, moisture content, and the penetration rate of the drill were essential parameters on the PM10 concentration caused by drilling operations in open-pit mines.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49817-49827 ◽  
Author(s):  
Li Mengshan ◽  
Liu Liang ◽  
Huang Xingyuan ◽  
Liu Hesheng ◽  
Chen Bingsheng ◽  
...  

A solubility prediction model based on a hybrid artificial intelligence method integrated with diffusion theory is proposed.


Sign in / Sign up

Export Citation Format

Share Document