scholarly journals Comparison of inspiratory and expiratory lung and lobe volumes among supine, standing, and sitting positions using conventional and upright CT

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshitake Yamada ◽  
Minoru Yamada ◽  
Shotaro Chubachi ◽  
Yoichi Yokoyama ◽  
Shiho Matsuoka ◽  
...  

Abstract Currently, no clinical studies have compared the inspiratory and expiratory volumes of unilateral lung or of each lobe among supine, standing, and sitting positions. In this prospective study, 100 asymptomatic volunteers underwent both low-radiation-dose conventional (supine position, with arms raised) and upright computed tomography (CT) (standing and sitting positions, with arms down) during inspiration and expiration breath-holds and pulmonary function test (PFT) on the same day. We compared the inspiratory/expiratory lung/lobe volumes on CT in the three positions. The inspiratory and expiratory bilateral upper and lower lobe and lung volumes were significantly higher in the standing/sitting positions than in the supine position (5.3–14.7% increases, all P < 0.001). However, the inspiratory right middle lobe volume remained similar in the three positions (all P > 0.15); the expiratory right middle lobe volume was significantly lower in the standing/sitting positions (16.3/14.1% decrease) than in the supine position (both P < 0.0001). The Pearson’s correlation coefficients (r) used to compare the total lung volumes on inspiratory CT in the supine/standing/sitting positions and the total lung capacity on PFT were 0.83/0.93/0.95, respectively. The r values comparing the total lung volumes on expiratory CT in the supine/standing/sitting positions and the functional residual capacity on PFT were 0.83/0.85/0.82, respectively. The r values comparing the total lung volume changes from expiration to inspiration on CT in the supine/standing/sitting positions and the inspiratory capacity on PFT were 0.53/0.62/0.65, respectively. The study results could impact preoperative CT volumetry of the lung in lung cancer patients (before lobectomy) for the prediction of postoperative residual pulmonary function, and could be used as the basis for elucidating undetermined pathological mechanisms. Furthermore, in addition to morphological evaluation of the chest, inspiratory and expiratory upright CT may be used as an alternative tool to predict lung volumes such as total lung capacity, functional residual capacity, and inspiratory capacity in situation in which PFT cannot be performed such as during an infectious disease pandemic, with relatively more accurate predictability compared with conventional supine CT.

1961 ◽  
Vol 16 (2) ◽  
pp. 331-338 ◽  
Author(s):  
C. Emirgil ◽  
H. O. Heinemann

Fifteen patients, free from cardiac and pulmonary disease, but receiving radiotherapy for carcinoma of the breast or carcinoma of the lung, were studied to determine the effect of irradiation on pulmonary function. Lung volumes, the distribution of inspired air, the levels of gases in the arterial blood, the diffusing capacity of the lung, and the mechanics of breathing were measured before and at varying intervals after the completion of radiotherapy. The results showed: early and progressive reduction of inspiratory capacity (IC) and residual volume (RV), decreasing the total lung capacity (TLC) without changing the RV/TLC ratio; unchanged distribution of inspired air; mild hypoxemia at rest; reduced diffusing capacity of the lung for carbon monoxide; and an early and progressive decrease in pulmonary compliance. These observations indicate that irradiation of the chest is complicated by a decrease in lung volumes, an impairment of the diffusing capacity, and an increase in the work of breathing. Submitted on September 6, 1960


1980 ◽  
Vol 49 (4) ◽  
pp. 566-570 ◽  
Author(s):  
S. S. Cassidy ◽  
M. Ramanathan ◽  
G. L. Rose ◽  
R. L. Johnson

The diffusing capacity of the lung for carbon monoxide (DLCO) varies directly with lung volume (VA) when measured during a breath-holding interval. DLCO measured during a slow exhalation from total lung capacity (TLC) to functional residual capacity (FRC) does not vary as VA changes. Since VA is reached by inhaling during breath holding and by exhaling during the slow exhalation maneuver, we hypothesized that the variability in the relation between DLCO and VA was due to hysteresis. To test this hypothesis, breath-holding measurements of DLCO were made at three lung volumes, both when VA was reached by inhaling from residual volume (RV) and when Va was reached by exhaling from TLC. At 72% TLC, DLCO was 22% higher when VA was reached by exhalation compared to inhalation (P < 0.02). At 52% TLC, DLCO was 19% higher when VA was reached by exhalation compared to exhalation (P < 0.005). DCLO measured during a slow exhalation fell on the exhalation limb of the CLCO/VA curve. these data indicate that there is hysteresis in DLCO with respect to lung volume.


1960 ◽  
Vol 15 (1) ◽  
pp. 40-42 ◽  
Author(s):  
Stanley S. Heller ◽  
William R. Hicks ◽  
Walter S. Root

Lung volume determinations (tidal volume, inspiratory capacity, inspiratory reserve volume, expiratory reserve volume, vital capacity, maximum breathing capacity, functional residual capacity, residual volume, and total lung capacity) were carried out on 16 professional singers and 21 subjects who had had no professional vocal training. No differences were found between the two groups of subjects, whether recumbent or standing, which could not be explained upon the basis of age, size, or errors involved in making the measurements. Submitted on March 24, 1959


1994 ◽  
Vol 77 (4) ◽  
pp. 2005-2014 ◽  
Author(s):  
A. R. Elliott ◽  
G. K. Prisk ◽  
H. J. Guy ◽  
J. B. West

Gravity is known to influence the mechanical behavior of the lung and chest wall. However, the effect of sustained microgravity (mu G) on lung volumes has not been reported. Pulmonary function tests were performed by four subjects before, during, and after 9 days of mu G exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box-and-flowmeter system and a respiratory mass spectrometer. Measurements included functional residual capacity (FRC), expiratory reserve volume (ERV), residual volume (RV), inspiratory and expiratory vital capacities (IVC and EVC), and tidal volume (VT). Total lung capacity (TLC) was derived from the measured EVC and RV values. With preflight standing values as a comparison, FRC was significantly reduced by 15% (approximately 500 ml) in mu G and 32% in the supine posture. ERV was reduced by 10–20% in mu G and decreased by 64% in the supine posture. RV was significantly reduced by 18% (310 ml) in mu G but did not significantly change in the supine posture compared with standing. IVC and EVC were slightly reduced during the first 24 h of mu G but returned to 1-G standing values within 72 h of mu G exposure. IVC and EVC in the supine posture were significantly reduced by 12% compared with standing. During mu G, VT decreased by 15% (approximately 90 ml), but supine VT was unchanged compared with preflight standing values. TLC decreased by approximately 8% during mu G and in the supine posture compared with preflight standing. The reductions in FRC, ERV, and RV during mu G are probably due to the cranial shift of the diaphragm, an increase in intrathoracic blood volume, and more uniform alveolar expansion.


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1991 ◽  
Vol 70 (6) ◽  
pp. 2611-2618 ◽  
Author(s):  
T. Mutoh ◽  
W. J. Lamm ◽  
L. J. Embree ◽  
J. Hildebrandt ◽  
R. K. Albert

Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.


2017 ◽  
Vol 123 (4) ◽  
pp. 876-883 ◽  
Author(s):  
Robert H. Brown ◽  
Robert J. Henderson ◽  
Elizabeth A. Sugar ◽  
Janet T. Holbrook ◽  
Robert A. Wise

Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876–883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.—High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability. NEW & NOTEWORTHY There is a surprising lack of studies examining the reproducibility of high-resolution CT in asthma. The current study examined reproducibility of airway measurements. In stable well-controlled asthmatic subjects, it is possible to reproducibly image airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.


1997 ◽  
Vol 83 (4) ◽  
pp. 1068-1075 ◽  
Author(s):  
Aladin M. Boriek ◽  
Joseph R. Rodarte ◽  
Theodore A. Wilson

Boriek, Aladin M., Joseph R. Rodarte, and Theodore A. Wilson. Kinematics and mechanics of midcostal diaphragm of dog. J. Appl. Physiol. 83(4): 1068–1075, 1997.—Radiopaque markers were attached to the peritoneal surface of three neighboring muscle bundles in the midcostal diaphragm of four dogs, and the locations of the markers were tracked by biplanar video fluoroscopy during quiet spontaneous breathing and during inspiratory efforts against an occluded airway at three lung volumes from functional residual capacity to total lung capacity in both the prone and supine postures. Length and curvature of the muscle bundles were determined from the data on marker location. Muscle lengths for the inspiratory states, as a fraction of length at functional residual capacity, ranged from 0.89 ± 0.04 at end inspiration during spontaneous breathing down to 0.68 ± 0.07 during inspiratory efforts at total lung capacity. The muscle bundles were found to have the shape of circular arcs, with the three bundles forming a section of a right circular cylinder. With increasing lung volume and diaphragm displacement, the circular arcs rotate around the line of insertion on the chest wall, the arcs shorten, but the radius of curvature remains nearly constant. Maximal transdiaphragmatic pressure was calculated from muscle curvature and maximal tension-length data from the literature. The calculated maximal transdiaphragmatic pressure-length curve agrees well with the data of Road et al. ( J. Appl. Physiol. 60: 63–67, 1986).


1986 ◽  
Vol 60 (4) ◽  
pp. 1198-1202 ◽  
Author(s):  
F. D. McCool ◽  
B. M. Pichurko ◽  
A. S. Slutsky ◽  
M. Sarkarati ◽  
A. Rossier ◽  
...  

Previous studies suggest that abdominal binding may affect the interaction of the rib cage and the diaphragm over the tidal range of breathing in quadriplegia. To determine whether abdominal binding influences rib cage motion over the entire range of inspiratory capacity, we used spirometry and the helium-dilution technique to measure functional residual capacity (FRC), inspiratory capacity, and total lung capacity (TLC) in eight quadriplegic and five normal subjects in supine, tilted (37 degrees), and seated positions. Combined data in all three positions indicated that, with abdominal binding, FRC and TLC decreased in normal subjects [delta FRC = -0.33 + 0.151 (SD) P less than 0.01); delta TLC = -0.16 + 0.121, P less than 0.05]. In quadriplegia there was also a reduction in FRC with binding (delta FRC = -0.32 + 0.101, P less than 0.001). However, TLC increased in quadriplegia (delta TLC = 0.07 + 0.061, P less than 0.025). In an additional six quadriplegic and five normal subjects, we used magnetometers to define the influences of abdominal binding on rib cage dimensions and TLC. In quadriplegia, rib cage dimensions were increased at TLC with abdominal binding, whereas there was no change in normals. Our data suggest that this inspiratory effect of abdominal binding on augmenting rib cage volume in quadriplegia is greater than the effect of impeding diaphragm descent, and thus abdominal binding produces a net increase in TLC in quadriplegia.


1961 ◽  
Vol 16 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Francisco Moreno ◽  
Harold A. Lyons

The changes produced by body posture on total lung capacity and its subdivisions have been reported for all positions except the prone position. Twenty normal subjects, twelve males and eight females, had determinations of total lung capacity in the three body positions, sitting, supine and prone. Tidal volume, minute ventilation and O2 consumption were also measured. The changes found on assumption of the supine position from the sitting position were similar to those previously reported. For the prone position, a smaller inspiratory capacity and a larger expiratory reserve volume were found. The mean values were changed, respectively, –8% and +37%. Associated with these changes was a significant increase of the functional residual capacity by 636 ml. Ventilation did not change significantly from that found during sitting, unlike the findings associated with the supine position, in which position the tidal volume was decreased. Respiratory frequency remained the same for all positions. Submitted on April 5, 1960


Sign in / Sign up

Export Citation Format

Share Document