scholarly journals Robustness of sex-differences in functional connectivity over time in middle-aged marmosets

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Benjamin C. Nephew ◽  
Marcelo Febo ◽  
Ryan Cali ◽  
Kathryn P. Workman ◽  
Laurellee Payne ◽  
...  

Abstract Nonhuman primates (NHPs) are an essential research model for gaining a comprehensive understanding of the neural mechanisms of neurocognitive aging in our own species. In the present study, we used resting state functional connectivity (rsFC) to investigate the relationship between prefrontal cortical and striatal neural interactions, and cognitive flexibility, in unanaesthetized common marmosets (Callithrix jacchus) at two time points during late middle age (8 months apart, similar to a span of 5–6 years in humans). Based on our previous findings, we also determine the reproducibility of connectivity measures over the course of 8 months, particularly previously observed sex differences in rsFC. Male marmosets exhibited remarkably similar patterns of stronger functional connectivity relative to females and greater cognitive flexibility between the two imaging time points. Network analysis revealed that the consistent sex differences in connectivity and related cognitive associations were characterized by greater node strength and/or degree values in several prefrontal, premotor and temporal regions, as well as stronger intra PFC connectivity, in males compared to females. The current study supports the existence of robust sex differences in prefrontal and striatal resting state networks that may contribute to differences in cognitive function and offers insight on the neural systems that may be compromised in cognitive aging and age-related conditions such as mild cognitive impairment and Alzheimer’s disease.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tiffany Bell ◽  
Akashroop Khaira ◽  
Mehak Stokoe ◽  
Megan Webb ◽  
Melanie Noel ◽  
...  

Abstract Background Migraine affects roughly 10% of youth aged 5–15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. Methods Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7–15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. Results We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. Conclusions We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alina Schulte ◽  
Christiane M. Thiel ◽  
Anja Gieseler ◽  
Maike Tahden ◽  
Hans Colonius ◽  
...  

Abstract Age-related hearing loss has been related to a compensatory increase in audio-visual integration and neural reorganization including alterations in functional resting state connectivity. How these two changes are linked in elderly listeners is unclear. The current study explored modulatory effects of hearing thresholds and audio-visual integration on resting state functional connectivity. We analysed a large set of resting state data of 65 elderly participants with a widely varying degree of untreated hearing loss. Audio-visual integration, as gauged with the McGurk effect, increased with progressing hearing thresholds. On the neural level, McGurk illusions were negatively related to functional coupling between motor and auditory regions. Similarly, connectivity of the dorsal attention network to sensorimotor and primary motor cortices was reduced with increasing hearing loss. The same effect was obtained for connectivity between the salience network and visual cortex. Our findings suggest that with progressing untreated age-related hearing loss, functional coupling at rest declines, affecting connectivity of brain networks and areas associated with attentional, visual, sensorimotor and motor processes. Especially connectivity reductions between auditory and motor areas were related to stronger audio-visual integration found with increasing hearing loss.


2019 ◽  
Author(s):  
Ravi D. Mill ◽  
Brian A. Gordon ◽  
David A. Balota ◽  
Jeffrey M. Zacks ◽  
Michael W. Cole

AbstractAlzheimer’s disease (AD) is linked to changes in fMRI task activations and fMRI resting-state functional connectivity (restFC), which can emerge early in the timecourse of illness. Study of these fMRI correlates of unhealthy aging has been conducted in largely separate subfields. Taking inspiration from neural network simulations, we propose a unifying mechanism wherein restFC network alterations associated with Alzheimer’s disease disrupt the ability for activations to flow between brain regions, leading to aberrant task activations. We apply this activity flow modeling framework in a large sample of clinically unimpaired older adults, which was segregated into healthy (low-risk) and at-risk subgroups based on established imaging (positron emission tomography amyloid) and genetic (apolipoprotein) risk factors for AD. We identified healthy task activations in individuals at low risk for AD, and then by estimating activity flow using at-risk AD restFC data we were able to predict the altered at-risk AD task activations. Thus, modeling the flow of healthy activations over at-risk AD connectivity effectively transformed the healthy aged activations into unhealthy aged activations. These results provide evidence that activity flow over altered intrinsic functional connections may act as a mechanism underlying Alzheimer’s-related dysfunction, even in very early stages of the illness. Beyond these mechanistic insights linking restFC with cognitive task activations, this approach has potential clinical utility as it enables prediction of task activations and associated cognitive dysfunction in individuals without requiring them to perform in-scanner cognitive tasks.Significance StatementDeveloping analytic approaches that can reliably predict features of Alzheimer’s disease is a major goal for cognitive and clinical neuroscience, with particular emphasis on identifying such diagnostic features early in the timeline of disease. We demonstrate the utility of an activity flow modeling approach, which predicts fMRI cognitive task activations in subjects identified as at-risk for Alzheimer’s disease. The approach makes activation predictions by transforming a healthy aged activation template via the at-risk subjects’ individual pattern of fMRI resting-state functional connectivity (restFC). The observed prediction accuracy supports activity flow as a mechanism linking age-related alterations in restFC and task activations, thereby providing a theoretical basis for incorporating restFC into imaging biomarker and personalized medicine interventions.


2016 ◽  
Vol 17 (4) ◽  
pp. S59
Author(s):  
S. Atalla ◽  
J. Gore ◽  
S. Bruehl ◽  
B. Rogers ◽  
M. Dietrich ◽  
...  

NeuroImage ◽  
2015 ◽  
Vol 115 ◽  
pp. 235-244 ◽  
Author(s):  
Gabriela Alarcón ◽  
Anita Cservenka ◽  
Marc D. Rudolph ◽  
Damien A. Fair ◽  
Bonnie J. Nagel

2013 ◽  
Vol 34 (12) ◽  
pp. 2304-2311 ◽  
Author(s):  
K.A. Koenig ◽  
M.J. Lowe ◽  
J. Lin ◽  
K.E. Sakaie ◽  
L. Stone ◽  
...  

2019 ◽  
Vol 14 (9) ◽  
pp. 1544 ◽  
Author(s):  
Laia Farras-Permanyer ◽  
Núria Mancho-Fora ◽  
Marc Montalà-Flaquer ◽  
David Bartrés-Faz ◽  
Lídia Vaqué-Alcázar ◽  
...  

2019 ◽  
Vol 126 (4) ◽  
pp. 1032-1041 ◽  
Author(s):  
Christina J. Dimech ◽  
John A. E. Anderson ◽  
Amber W. Lockrow ◽  
R. Nathan Spreng ◽  
Gary R. Turner

We investigated sex differences in the association between a measure of physical health, cardiorespiratory fitness (CRF), and brain function using resting-state functional connectivity fMRI. We examined these sex differences in the default, frontoparietal control, and cingulo-opercular networks, assemblies of functionally connected brain regions known to be impacted by both age and fitness level. Healthy older adults ( n = 49; 29 women) were scanned to obtain measures of intrinsic connectivity within and across these 3 networks. We calculated global efficiency (a measure of network integration) and local efficiency (a measure of network specialization) using graph theoretical methods. Across all three networks combined, local efficiency was positively associated with CRF, and this was more robust in male versus female older adults. Furthermore, global efficiency was negatively associated with CRF, but only in males. Our findings suggest that in older adults, associations between brain network integrity and physical health are sex-dependent. These results underscore the importance of considering sex differences when examining associations between fitness and brain function in older adulthood. NEW & NOTEWORTHY We examined the association between cardiorespiratory fitness and resting state functional connectivity in several brain networks known to be impacted by age and fitness level. We found significant associations between fitness and measures of network integration and network specialization, but in a sex-dependent manner, highlighting the interplay between sex differences, fitness, and aging brain health. Our findings underscore the importance of considering sex differences when examining associations between fitness and brain function in older adulthood.


Sign in / Sign up

Export Citation Format

Share Document