scholarly journals Enhanced energy density of PVDF-based nanocomposites via a core–shell strategy

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
JingJing Xu ◽  
Chao Fu ◽  
Huiying Chu ◽  
Xianyou Wu ◽  
Zhongyang Tan ◽  
...  

Abstract In recent years, high energy density polymer capacitors have attracted a lot of scientific interest due to their potential applications in advanced power systems and electronic devices. Here, core–shell structured TiO2@SrTiO3@polydamine nanowires (TiO2@SrTiO3@PDA NWs) were synthesized via a combination of surface conversion reaction and in-situ polymerization method, and then incorporated into the poly(vinylidene fluoride) (PVDF) matrix. Our results showed that a small amount of TiO2@SrTiO3@PDA NWs can simultaneously enhance the breakdown strength and electric displacement of nanocomposite (NC) films, resulting in improved energy storage capability. The 5 wt% TiO2@SrTiO3@PDA NWs/PVDF NC demonstrates 1.72 times higher maximum discharge energy density compared to pristine PVDF (10.34 J/cm3 at 198 MV/m vs. 6.01 J/cm3 at 170 MV/m). In addition, the NC with 5 wt% TiO2@SrTiO3@PDA NWs also demonstrates an excellent charge–discharge efficiency (69% at 198 MV/m). Enhanced energy storage performance is due to hierarchical interfacial polarization among their multiple interfaces, the large aspect ratio as well as surface modification of the TiO2@SrTiO3 NWs. The results of this study provide guidelines and a foundation for the preparation of the polymer NCs with an outstanding discharge energy density.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Dou Zhang ◽  
Xuefan Zhou ◽  
James Roscow ◽  
Kechao Zhou ◽  
Lu Wang ◽  
...  

Abstract There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Gang Jian ◽  
Yong Jiao ◽  
Liang Feng ◽  
Qingzhen Meng ◽  
Ning Yang ◽  
...  

AbstractDielectric substances exhibit great potential for high-power capacitors due to their high stability and fast charge–discharge; however, a long-term challenge is to enhance energy density. Here, we propose a poly(vinylidene fluoride) (PVDF) composite utilizing BaTiO3 nanoparticle@TiO2 nanosheet (BT@TO ns) 2D nanohybrids as fillers, aiming at combining the interfacial strategy of using a core–shell filler and the electron scattering of a 2D filler to improve the energy density. With 4 wt% filler, the composite possesses the largest breakdown strength (Eb) of 561.2 MV m−1, which is significantly enhanced from the 407.6 MV m−1 of PVDF, and permittivity of 12.6 at 1 kHz, which is a 23% increase from that of PVDF. A superhigh energy density of 21.3 J cm−3 with an efficiency of 61% is obtained at 550 MV m−1. The 2D BT@TO ns-filled composite exhibits a higher energy density than composites filled with core–shell 1D BT@TO nws or non-core–shell 0D BT, 1D TO, or 2D TO particles. The Eb and energy density improvements are attributed to the buffer layer-based interface engineering and enhanced area scattering of electrons caused by the 2D hybrids, an effect similar to that of a ping-pong paddle to scatter electric field-induced charge migrations in composites. Thus, an effective hybrid strategy is presented for achieving high-performance polymer composites that can be used in energy storage devices.


2017 ◽  
Vol 5 (37) ◽  
pp. 19607-19612 ◽  
Author(s):  
Wen-Bo Li ◽  
Di Zhou ◽  
Li-Xia Pang ◽  
Ran Xu ◽  
Huan-Huan Guo

Novel BaTiO3-based capacitors show promising energy storage performance with high breakdown strength and discharge energy density and outstanding energy efficiency.


2021 ◽  
pp. 095400832199352
Author(s):  
Wei Deng ◽  
Guanguan Ren ◽  
Wenqi Wang ◽  
Weiwei Cui ◽  
Wenjun Luo

Polymer composites with high dielectric constant and thermal stability have shown great potential applications in the fields relating to the energy storage. Herein, core-shell structured polyimide@BaTiO3 (PI@BT) nanoparticles were fabricated via in-situ polymerization of poly(amic acid) (PAA) and the following thermal imidization, then utilized as fillers to prepare PI composites. Increased dielectric constant with suppressed dielectric loss, and enhanced energy density as well as heat resistance were simultaneously realized due to the presence of PI shell between BT nanoparticles and PI matrix. The dielectric constant of PI@BT/PI composites with 55 wt% fillers increased to 15.0 at 100 Hz, while the dielectric loss kept at low value of 0.0034, companied by a high energy density of 1.32 J·cm−3, which was 2.09 times higher than the pristine PI. Moreover, the temperature at 10 wt% weight loss reached 619°C, demonstrating the excellent thermostability of PI@BT/PI composites. In addition, PI@BT/PI composites exhibited improved breakdown strength and toughness as compared with the BT/PI composites due to the well dispersion of PI@BT nanofillers and the improved interfacial interactions between nanofillers and polymer matrix. These results provide useful information for the structural design of high-temperature dielectric materials.


2020 ◽  
Vol 13 (06) ◽  
pp. 2051042
Author(s):  
Zhong Yang ◽  
Jing Wang ◽  
Long He ◽  
Chaoyong Deng ◽  
Kongjun Zhu

Flexible dielectric capacitors are becoming shining stars in modern electronic devices. Ceramic particles with large dielectric constants and benign compatibility are attractive candidates to enhance the energy storage density of pristine polymer capacitors while guaranteeing their flexibility. In this work, double-shell structure of Al2O3 (AO) and dopamine (PDA) were successively coated on the Nd-doped BaTiO3 (NBT) particles and then introduced into the Poly(vinylidene fluoride) (PVDF) matrix. Obvious enhancement in dielectric constants was observed while the dielectric loss remained nearly constant. For the composite films with 1–4[Formula: see text]vol.% NBT@AO@PDA NPs, the maximum energy density of 9.1[Formula: see text]J/cm3 and energy efficiency of 65% was achieved at 430[Formula: see text]MV/m in the sample with 1[Formula: see text]vol.% filling ratio, which are 1.4 and 1.3 times larger than those of pristine PVDF at 450[Formula: see text]MV/m. The finite element simulation reveals the effective relief of the electric field concentration in the composite film induced by the AO and PDA layers. The greater improvement in the energy storage performance could be anticipated if the dispersity of NBT@AO@PDA NPs was further improved.


RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 1589-1599 ◽  
Author(s):  
Honghong Gong ◽  
Bei Miao ◽  
Xiao Zhang ◽  
Junyong Lu ◽  
Zhicheng Zhang

The antiferroelectric-like behavior could be retained up to 675 MV m−1 with a discharged energy density of 23.3 J cm−3 because of the confinement of rigid PMMA segment onto the ferroelectric relaxation of P(VDF-TrFE-CTFE) and the high breakdown strength.


2016 ◽  
Vol 4 (13) ◽  
pp. 4797-4807 ◽  
Author(s):  
Min Zhang ◽  
Lin Zhang ◽  
Meng Zhu ◽  
Yiguang Wang ◽  
Nanwen Li ◽  
...  

A new family of poly(4-methyl-1-pentene) ionomers with high energy density at a high breakdown strength, high charge-discharge energy efficiency and a very narrow breakdown distribution for energy storage in future capacitor devices.


2012 ◽  
Vol 77 ◽  
pp. 138-145
Author(s):  
Gregory J. Ehlert ◽  
Hai Xiong Tang ◽  
Natalie R. Meeks ◽  
Henry A. Sodano

The integration of energy storage into structural multifunctional materials has found use in a wide variety of applications, such as future air and ground vehicles. However, the present realization of these materials cannot be used to increase the structural properties thus limiting its future use in these applications. Here, we developed a novel multifunctional composite material using polyvinylidene fluoride (PVDF) interleaves in carbon fiber composites. The carbon fibers function as both the structural reinforcement as well as the electrodes for the dielectric polymer. It has shown that energy storage functionality can be added into the composites with no reduction in the short beam shear strength. Currently, the breakdown strength is low due to challenges in the processing of the composites and the potential for regions of reduced thickness during pressing. In future research, the manufacturing process of the composites will be investigated to improve the breakdown strength in order to obtain high energy density in addition to preserving the outstanding mechanical properties. This new multifunctional material will open a door to the development of advanced structures that distribute energy storage throughout the composite thus eliminating their current ad hoc implementation.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1349 ◽  
Author(s):  
Jian Wang ◽  
Yunchuan Xie ◽  
Jingjing Liu ◽  
Zhicheng Zhang ◽  
Qiang Zhuang ◽  
...  

Polymer-based nanodielectrics have been intensively investigated for their potential application as energy storage capacitors. However, their relatively low energy density (Ue) and discharging efficiency (η) may greatly limit their practical usage. In present work, high insulating two-dimensional boron nitride nanosheets (BNNS), were introduced into a linear dielectric polymer (P(VDF-TrFE-CTFE)-g-PMMA) matrix to enhance the energy storage performance of the composite. Thanks to the surface coating of polydopamine (PDA) on BN nanosheets, the composite filled with 6 wt% coated BNNS (mBNNS) exhibits significantly improved breakdown strength (Eb) of 540 MV/m and an energy density (Ue) of 11 J/cm3, which are increased by 23% and 100%, respectively as compared with the composite filled with the same content of pristine BNNS. Meanwhile, η of both composites is well retained at around 70% even under a high voltage of 400 MV/m, which is superior to most of the reported composites. This work suggests that complexing polymer matrix with linear dielectric properties with surface coated BNNS fillers with high insulating 2D structure might be a facile strategy to achieve composite dielectrics with simultaneously high energy density and high discharging efficiency.


Sign in / Sign up

Export Citation Format

Share Document