scholarly journals CELF2 regulates the species-specific alternative splicing of TREM2

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoaki Yanaizu ◽  
Chika Washizu ◽  
Nobuyuki Nukina ◽  
Jun-ichi Satoh ◽  
Yoshihiro Kino

Abstract Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.

RNA Biology ◽  
2019 ◽  
Vol 16 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Zeng-Zhang Zheng ◽  
Xia Sun ◽  
Bei Zhang ◽  
Jia Pu ◽  
Ze-Yu Jiang ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9424
Author(s):  
Juan F. García-Moreno ◽  
Luísa Romão

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a cellular post-transcriptional process that generates protein isoform diversity. Nonsense-mediated RNA decay (NMD) is an mRNA surveillance pathway that recognizes and selectively degrades transcripts containing premature translation-termination codons (PTCs), thereby preventing the production of truncated proteins. Nevertheless, NMD also fine-tunes the gene expression of physiological mRNAs encoding full-length proteins. Interestingly, around one third of all AS events results in PTC-containing transcripts that undergo NMD. Numerous studies have reported a coordinated action between AS and NMD, in order to regulate the expression of several genes, especially those coding for RNA-binding proteins (RBPs). This coupling of AS to NMD (AS-NMD) is considered a gene expression tool that controls the ratio of productive to unproductive mRNA isoforms, ultimately degrading PTC-containing non-functional mRNAs. In this review, we focus on the mechanisms underlying AS-NMD, and how this regulatory process is able to control the homeostatic expression of numerous RBPs, including splicing factors, through auto- and cross-regulatory feedback loops. Furthermore, we discuss the importance of AS-NMD in the regulation of biological processes, such as cell differentiation. Finally, we analyze interesting recent data on the relevance of AS-NMD to human health, covering its potential roles in cancer and other disorders.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Claudia Vivori ◽  
Panagiotis Papasaikas ◽  
Ralph Stadhouders ◽  
Bruno Di Stefano ◽  
Anna Ribó Rubio ◽  
...  

Abstract Background Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. Results We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. Conclusions Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


2012 ◽  
Vol 196 (6) ◽  
pp. 699-712 ◽  
Author(s):  
Aymeric Ravel-Chapuis ◽  
Guy Bélanger ◽  
Ramesh S. Yadava ◽  
Mani S. Mahadevan ◽  
Luc DesGroseillers ◽  
...  

In myotonic dystrophy type 1 (DM1), dystrophia myotonica protein kinase messenger ribonucleic acids (RNAs; mRNAs) with expanded CUG repeats (CUGexp) aggregate in the nucleus and become toxic to cells by sequestering and/or misregulating RNA-binding proteins, resulting in aberrant alternative splicing. In this paper, we find that the RNA-binding protein Staufen1 is markedly and specifically increased in skeletal muscle from DM1 mouse models and patients. We show that Staufen1 interacts with mutant CUGexp mRNAs and promotes their nuclear export and translation. This effect is critically dependent on the third double-stranded RNA–binding domain of Staufen1 and shuttling of Staufen1 into the nucleus via its nuclear localization signal. Moreover, we uncover a new role of Staufen1 in splicing regulation. Overexpression of Staufen1 rescues alternative splicing of two key pre-mRNAs known to be aberrantly spliced in DM1, suggesting its increased expression represents an adaptive response to the pathology. Altogether, our results unravel a novel function for Staufen1 in splicing regulation and indicate that it may positively modulate the complex DM1 phenotype, thereby revealing its potential as a therapeutic target.


2020 ◽  
Author(s):  
Claudia Vivori ◽  
Panagiotis Papasaikas ◽  
Ralph Stadhouders ◽  
Bruno Di Stefano ◽  
Clara Berenguer Balaguer ◽  
...  

AbstractIn contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for cell reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we have studied the dynamics of alternative splicing (AS) changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells. These changes, generally uncoupled from transcriptional regulation, significantly overlapped with splicing programs reported during reprogramming of mouse embryonic fibroblasts (MEFs). Correlation between gene expression of potential regulators and specific clusters of AS changes enabled the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of MEFs reprogramming. These RNA-binding proteins control partially overlapping programs of splicing regulation affecting genes involved in developmental and morphogenetic processes. Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process.


2011 ◽  
Vol 193 (3) ◽  
pp. 509-520 ◽  
Author(s):  
Jung-Chun Lin ◽  
Woan-Yuh Tarn

Alternative splicing contributes largely to cell differentiation and functional specification. We previously reported that the RNA-binding protein RBM4 antagonizes the activity of splicing factor PTB to modulate muscle cell–specific exon selection of α-tropomyosin. Here we show that down-regulation of PTB and its neuronal analogue nPTB during muscle cell differentiation may involve alternative splicing-coupled nonsense-mediated mRNA decay. RBM4 regulates PTB/nPTB expression by activating exon skipping of their transcripts during myogenesis. Moreover, RBM4 and PTB target a common set of transcripts that undergo muscle cell–specific alternative splicing. Overexpression of RBM4 invariably promoted expression of muscle cell–specific isoforms, which recapitulated in vivo alternative splicing changes during muscle differentiation, whereas PTB acted oppositely to RBM4 in expression of mRNA isoforms specific for late-stage differentiation. Therefore, RBM4 may synergize its effect on muscle cell–specific alternative splicing by down-regulating PTB expression and antagonizing the activity of PTB in exon selection, which highlights a hierarchical role for RBM4 in a splicing cascade that regulates myogenesis.


2005 ◽  
Vol 25 (14) ◽  
pp. 6267-6278 ◽  
Author(s):  
Andrea N. Ladd ◽  
George Taffet ◽  
Craig Hartley ◽  
Debra L. Kearney ◽  
Thomas A. Cooper

ABSTRACT Members of the CELF family of RNA binding proteins have been implicated in alternative splicing regulation in developing heart. Transgenic mice that express a nuclear dominant-negative CELF protein specifically in the heart (MHC-CELFΔ) develop cardiac hypertrophy and dilated cardiomyopathy with defects in alternative splicing beginning as early as 3 weeks after birth. MHC-CELFΔ mice exhibit extensive cardiac fibrosis, severe cardiac dysfunction, and premature death. Interestingly, the penetrance of the phenotype is greater in females than in males despite similar levels of dominant-negative expression, suggesting that there is sex-specific modulation of splicing activity. The cardiac defects in MHC-CELFΔ mice are directly attributable to reduced levels of CELF activity, as crossing these mice with mice overexpressing CUG-BP1, a wild-type CELF protein, rescues defects in alternative splicing, the severity and incidence of cardiac hypertrophy, and survival. We conclude that CELF protein activity is required for normal alternative splicing in the heart in vivo and that normal CELF-mediated alternative splicing regulation is in turn required for normal cardiac function.


Sign in / Sign up

Export Citation Format

Share Document