scholarly journals Financial and institutional support are important for large-scale kelp forest restoration

Author(s):  
Aaron Matthius Eger ◽  
Adriana Verges ◽  
Chang Geun Choi ◽  
Hartvig Christie ◽  
Melinda A. Coleman ◽  
...  

Kelps form extensive underwater forests that underpin valuable ecosystem goods and services in temperate and polar rocky coastlines worldwide. Stressors such as ocean warming and pollution are causing regional declines of kelp forests and their associated services worldwide. Kelp forest restoration is becoming a prominent management intervention, but we have little understanding of what drives restoration success at appropriate spatial scales. This is a fundamental issue because of the typical mismatch between the scale of degradation and the scale of the intervention of these systems. Restoration guidelines commonly discuss project elements such as defining goals and metrics of success, the removal or mitigation of relevant stressors and ecological knowledge of the species, but institutional and financial support that underpins all these requirements is rarely discussed or emphasized. We begin to address this gap and review the world’s largest scale kelp restoration projects, involving four countries and six kelp genera, initiated in response to different causes of decline. We argue that to restore kelp at scale, adequate financing and institutional support are critical to overcome ecological and environmental limitations. As kelp restoration efforts progress into a future of increasing climate change, this logistical support element is likely to become even more important as innovative approaches have higher costs.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Matthew S. Edwards ◽  
Brenda Konar

Abstract Trophic downgrading in coastal waters has occurred globally during recent decades. On temperate rocky reefs, this has resulted in widespread kelp deforestation and the formation of sea urchin barrens. We hypothesize that the intact kelp forest communities are more spatially variable than the downgraded urchin barren communities, and that these differences are greatest at small spatial scales where the influence of competitive and trophic interactions is strongest. To address this, benthic community surveys were done in kelp forests and urchin barrens at nine islands spanning 1230 km of the Aleutian Archipelago where the loss of predatory sea otters has resulted in the trophic downgrading of the region’s kelp forests. We found more species and greater total spatial variation in community composition within the kelp forests than in the urchin barrens. Further, the kelp forest communities were most variable at small spatial scales (within each forest) and least variable at large spatial scales (among forests on different islands), while the urchin barren communities followed the opposite pattern. This trend was consistent for different trophic guilds (primary producers, grazers, filter feeders, predators). Together, this suggests that Aleutian kelp forests create variable habitats within their boundaries, but that the communities within these forests are generally similar across the archipelago. In contrast, urchin barrens exhibit relatively low variability within their boundaries, but these communities vary substantially among different barrens across the archipelago. We propose this represents a shift from small-scale biological control to large-scale oceanographic control of these communities.


2020 ◽  
Vol 7 ◽  
Author(s):  
Aaron M. Eger ◽  
Adriana Vergés ◽  
Chang Geun Choi ◽  
Hartvig Christie ◽  
Melinda A. Coleman ◽  
...  

2021 ◽  
Author(s):  
Jorge Arroyo-Esquivel ◽  
Marissa L Baskett ◽  
Meredith McPherson ◽  
Alan Hastings

In restoration ecology, the Field of Dreams Hypothesis posits that restoration efforts that create a suitable environment could lead to eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has lead to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a "field of dreams" approach requires comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale to what would happen with more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, for the case of bull kelp forests, setting more favorable initial conditions for kelp recovery through implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate of achieving the target outcomes.


2020 ◽  
Author(s):  
Emma Kennedy ◽  
Chris Roelfsema ◽  
Mitchell Lyons ◽  
Eva Kovacs ◽  
Rodney Borrego-Acevedo ◽  
...  

AbstractCoral reef management and conservation stand to benefit from improved high-resolution global mapping. Yet classifications employed in large-scale reef mapping to date are typically poorly defined, not shared or region-specific. Here we present Reef Cover, a new coral reef geomorphic zone classification, developed to support global-scale coral reef habitat mapping in a transparent and version-based framework. We developed scalable classes by focusing on attributes that can be observed remotely, but whose membership rules also reflect knowledge of reef formation, growth and functioning. Bridging the divide between earth observation data and geo-ecological knowledge of reefs, Reef Cover maximises the trade-off between applicability at global scales, and relevance and accuracy at local scales. We use the Caroline and Mariana Island chains in the Pacific as a case study to demonstrate use of the classification scheme and its scientific and conservation applications. The primary application of Reef Cover is the Allen Coral Atlas global coral reef mapping project, but the system will support bespoke reef mapping conducted at a variety of spatial scales.


2015 ◽  
Vol 12 (6) ◽  
pp. 4907-4945 ◽  
Author(s):  
D. Krause-Jensen ◽  
C. M. Duarte ◽  
I. E. Hendriks ◽  
L. Meire ◽  
M. E. Blicher ◽  
...  

Abstract. The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification (OA) and large-scale assessments of pH and the saturation state for aragonite (Ωarag) indicate that it is already close to corrosive states (Ωarag < 1). In high-latitude coastal waters the regulation of pH and Ωarag is far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. As most calcifiers occupy coastal habitats, the assessment of risks from OA to these vulnerable organisms cannot be derived from extrapolation of current and forecasted offshore conditions, but requires an understanding of the regimes of pH and Ωarag in their coastal habitats. To increase knowledge of the natural variability of pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH-variability in a Greenland fjord in a nested scale approach. A sensor array logging pH, O2, PAR, temperature and salinity was applied on spatial scales ranging from km-scale across the horizontal extension of the fjord, over 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores, to cm-m scale within kelp forests and mm-scale across boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH-measurements combined with relationships between salinity, total alkalinity and dissolved inorganic carbon we also estimated variability of Ωarag. Results show variability in pH and Ωarag of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m3 of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units and macrophyte boundary layers a pH-range of up to 0.8 units. Overall, Ωarag was favorable to calcification, and pelagic and benthic metabolism was an important driver of pH and Ωarag producing mosaics of variability from low levels in the dark to peak levels at high irradiance. We suggest that productive coastal environments may form niches of high pH in a future acidified Arctic Ocean.


2021 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Ezequiel Marzinelli ◽  
Hartvig Christie ◽  
Camilla W. Fagerli ◽  
Daisuke Fujita ◽  
...  

Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. To distil lessons learned over the last 60 years of kelp restoration, we synthesize the results of nearly 200 projects spanning 1957 to 2020, across 16 countries, five languages, and user groups. Our results show that kelp restoration projects have increased in frequency, have employed 12 different main methodologies, and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 hectare (80%) and over time spans of less than 2 years. We show that projects are most successful when they are located near existing healthy kelp forests. Disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, but we explore avenues to reduce these costs and suggest pathways for scaling-up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analyzing the data, and providing updated information. In this way, our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Meredith L. McPherson ◽  
Dennis J. I. Finger ◽  
Henry F. Houskeeper ◽  
Tom W. Bell ◽  
Mark H. Carr ◽  
...  

AbstractClimate change is responsible for increased frequency, intensity, and duration of extreme events, such as marine heatwaves (MHWs). Within eastern boundary current systems, MHWs have profound impacts on temperature-nutrient dynamics that drive primary productivity. Bull kelp (Nereocystis luetkeana) forests, a vital nearshore habitat, experienced unprecedented losses along 350 km of coastline in northern California beginning in 2014 and continuing through 2019. These losses have had devastating consequences to northern California communities, economies, and fisheries. Using a suite of in situ and satellite-derived data, we demonstrate that the abrupt ecosystem shift initiated by a multi-year MHW was preceded by declines in keystone predator population densities. We show strong evidence that northern California kelp forests, while temporally dynamic, were historically resilient to fluctuating environmental conditions, even in the absence of key top predators, but that a series of coupled environmental and biological shifts between 2014 and 2016 resulted in the formation of a persistent, altered ecosystem state with low primary productivity. Based on our findings, we recommend the implementation of ecosystem-based and adaptive management strategies, such as (1) monitoring the status of key ecosystem attributes: kelp distribution and abundance, and densities of sea urchins and their predators, (2) developing management responses to threshold levels of these attributes, and (3) creating quantitative restoration suitability indices for informing kelp restoration efforts.


2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Daniel M. Cáceres ◽  
Esteban Tapella ◽  
Diego A. Cabrol ◽  
Lucrecia Estigarribia

Argentina is experiencing an expansion of soya and maize cultivation that is pushing the agricultural frontier over areas formerly occupied by native Chaco forest. Subsistance farmers use this dry forest to raise goats and cattle and to obtain a broad range of goods and services. Thus, two very different and non-compatible land uses are in dispute. On the one hand subsistance farmers fostering an extensive and diversified forest use, on the other hand, large-scale producers who need to clear out the forest to sow annual crops in order to appropriate soil fertility. First, the paper looks at how these social actors perceive Chaco forest, what their interests are, and what kind of values they attach to it. Second, we analyze the social-environmental conflicts that arise among actors in order to appropriate forest’s benefits. Special attention is paid to the role played by the government in relation to: (a) how does it respond to the demands of the different sectors; and (b) how it deals with the management recommendations produced by scientists carrying out social and ecological research. To put these ideas at test we focus on a case study located in Western Córdoba (Argentina), where industrial agriculture is expanding at a fast pace, and where social actors’ interests are generating a series of disputes and conflicts. Drawing upon field work, the paper shows how power alliances between economic and political powers, use the institutional framework of the State in their own benefit, disregarding wider environmental and social costs. 


Sign in / Sign up

Export Citation Format

Share Document