scholarly journals Author Correction: Effects of different intracranial volume correction methods on univariate sex differences in grey matter volume and multivariate sex prediction

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Carla Sanchis-Segura ◽  
Maria Victoria Ibañez-Gual ◽  
Naiara Aguirre ◽  
Álvaro Javier Cruz-Gómez ◽  
Cristina Forn

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Carla Sanchis-Segura ◽  
Maria Victoria Ibañez-Gual ◽  
Naiara Aguirre ◽  
Álvaro Javier Cruz-Gómez ◽  
Cristina Forn

Abstract Sex differences in 116 local gray matter volumes (GMVOL) were assessed in 444 males and 444 females without correcting for total intracranial volume (TIV) or after adjusting the data with the scaling, proportions, power-corrected proportions (PCP), and residuals methods. The results confirmed that only the residuals and PCP methods completely eliminate TIV-variation and result in sex-differences that are “small” (∣d∣ < 0.3). Moreover, as assessed using a totally independent sample, sex differences in PCP and residuals adjusted-data showed higher replicability ($$\approx $$ ≈ 93%) than scaling and proportions adjusted-data $$( \approx $$ ( ≈ 68%) or raw data ($$\approx $$ ≈ 45%). The replicated effects were meta-analyzed together and confirmed that, when TIV-variation is adequately controlled, volumetric sex differences become “small” (∣d∣ < 0.3 in all cases). Finally, we assessed the utility of TIV-corrected/ TIV-uncorrected GMVOL features in predicting individuals’ sex with 12 different machine learning classifiers. Sex could be reliably predicted (> 80%) when using raw local GMVOL, but also when using scaling or proportions adjusted-data or TIV as a single predictor. Conversely, after properly controlling TIV variation with the PCP and residuals’ methods, prediction accuracy dropped to $$\approx $$ ≈ 60%. It is concluded that gross morphological differences account for most of the univariate and multivariate sex differences in GMVOL


NeuroImage ◽  
2010 ◽  
Vol 49 (2) ◽  
pp. 1205-1212 ◽  
Author(s):  
A. Veronica Witte ◽  
Markus Savli ◽  
Alexander Holik ◽  
Siegfried Kasper ◽  
Rupert Lanzenberger

2019 ◽  
Author(s):  
Elvisha Dhamala ◽  
Keith W. Jamison ◽  
Mert R. Sabuncu ◽  
Amy Kuceyeski

AbstractA thorough understanding of sex differences, if any, that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit differences in clinical and behavioural phenotypes between males and females. In this work, we evaluate sex differences in regional temporal dependence of resting-state brain activity using 195 male-female pairs (aged 22-37) from the Human Connectome Project. Male-female pairs are strictly matched for total grey matter volume. We find that males have more persistent long-range temporal dependence than females in regions within temporal, parietal, and occipital cortices. Machine learning algorithms trained on regional temporal dependence measures achieve sex classification accuracies of up to 81%. Regions with the strongest feature importance in the sex classification task included cerebellum, amygdala, frontal cortex, and occipital cortex. Additionally, we find that even after males and females are strictly matched on total grey matter volume, significant regional volumetric sex differences persist in many cortical and subcortical regions. Our results indicate males have larger cerebella, hippocampi, parahippocampi, thalami, caudates, and amygdalae while females have larger cingulates, precunei, frontal cortices, and parietal cortices. Sex classification based on regional volume achieves accuracies of up to 85%; cerebellum, cingulate cortex, and temporal cortex are the most important features. These findings highlight the important role of strict volume matching when studying brain-based sex differences. Differential patterns in regional temporal dependence between males and females identifies a potential neurobiological substrate underlying sex differences in functional brain activation patterns and the behaviours with which they correlate.


2021 ◽  
Author(s):  
Tao Chen ◽  
Zhi Li ◽  
Ji-fang Cui ◽  
Jia Huang ◽  
Muireann Irish ◽  
...  

Abstract Sex differences in behaviour and cognition have been widely observed, however, little is known about such differences in maintaining a balanced time perspective or their potential underlying neural substrates. To answer the above questions, two studies were conducted. In Study 1, time perspective was assessed in 1,913 college students, including 771 males and 1,092 females, and demonstrated that females had a significantly more balanced time perspective than males. In Study 2, 58 males and 47 females underwent assessment of time perspective and structural brain imaging. Voxel-based morphometry analysis and cortical thickness analysis were used to analyse the structural imaging data. Results showed that compared with males, females demonstrated a more balanced time perspective, which primarily related to lower grey matter volume in left precuneus, right cerebellum, right putamen and left supplementary motor area. Analysis of cortical thickness failed to reveal any significant sex differences. Furthermore, the sex difference in grey matter volume of left precuneus, right cerebellum, right putamen and left supplementary motor area could account for the difference in balanced time perspective between males and females. The findings deepen our understanding of sex differences in human cognition and their potential neural signature, and may inform tailored interventions to support a balanced time perspective in daily life.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Ryan J Dougherty ◽  
Tina Hoang ◽  
Lenore J Launer ◽  
David R Jacobs ◽  
Stephen Sidney ◽  
...  

Introduction: While it is generally accepted that a physically active lifestyle is important for overall health, sedentary behavior has become a public health focus due to evidence that it may impart unique risk for chronic diseases. The purpose of this study was to examine the association between 20-year television (TV) viewing patterns, as a proxy for sedentary behavior, with grey matter volume in midlife. We hypothesized that greater TV viewing in early to mid-adulthood would be associated with lower grey matter volume at midlife, independent from physical activity. Methods: We evaluated 599 participants (306 female, 264 black, mean age 30.3±3.5 at baseline and 50.2±3.5 years at follow-up and MRI) from the prospective CARDIA study. We assessed TV patterns with repeated interviewer-administered questionnaire spanning 20 years. Structural MRI (3T) measures of grey matter were assessed at year 20 during midlife. We used multivariable linear models to examine the association between long-term TV viewing (mean hours) and frontal cortex, entorhinal cortex, hippocampal, and total grey matter volumes, adjusting for demographics, intracranial volume, and study site. Results: Over the 20 years, participants reported viewing an average of 2.5±1.7 hours of TV per day (range: 0-10 hours). After multivariable adjustment, greater TV viewing was negatively associated with grey matter volume in the frontal (β= -0.773; p = 0.01) and entorhinal cortex (β= -23.8; p = 0.05) as well as total grey matter (β= -2.089; p = 0.003) but not hippocampus. These results remained unchanged after additional adjustment for physical activity. For each one standard deviation increase in TV viewing, the difference in grey matter volume z-score was approximately 0.06 less for each of the three regions ( p< 0.05; Figure 1). Conclusions: Among middle-aged adults, greater TV viewing in early to mid-adulthood was associated with lower grey matter volume. Sedentariness or other facets of TV viewing may be an important risk factor for brain aging even in middle age.


2012 ◽  
Vol 18 (1) ◽  
pp. 147-160 ◽  
Author(s):  
Kenneth Rando ◽  
Keri Tuit ◽  
Jonas Hannestad ◽  
Joseph Guarnaccia ◽  
Rajita Sinha

Author(s):  
William D. Hopkins ◽  
Cheryl D. Stimpson ◽  
Chet C. Sherwood

Bonobos and chimpanzees are two closely relates species of the genus Pan, yet they exhibit marked differences in anatomy, behaviour and cognition. For this reason, comparative studies on social behaviour, cognition and brain organization between these two species provide important insights into evolutionary models of human origins. This chapter summarizes studies on socio-communicative competencies and social cognition in chimpanzees and bonobos from the authors’ laboratory in comparison to previous reports. Additionally, recent data on species differences and similarities in brain organization in grey matter volume and distribution is presented. Some preliminary findings on microstructural brain organization such as neuropil space and cellular distribution in key neurotransmitters and neuropeptides involved in social behaviour and cognition is presented. Though these studies are in their infancy, the findings point to potentially important differences in brain organization that may underlie bonobo and chimpanzees’ differences in social behaviour, communication and cognition. Les bonobos et les chimpanzés sont deux espèces du genus Pan prochement liées, néanmoins ils montrent des différences anatomiques, comportementales et cognitives marquées. Pour cette raison, les études comparatives sur le comportement social, la cognition et l’organisation corticale entre ces deux espèces fournissent des idées sur les modèles évolutionnaires des origines humaines. Dans ce chapitre, nous résumons des études sur les compétences socio-communicatives et la cognition sociale chez les chimpanzés et les bonobos de notre laboratoire en comparaison avec des rapports précédents. En plus, nous présentons des données récentes sur les différences et similarités d’organisation corticale du volume et distribution de la matière grise entre espèces. Nous présentons plus de résultats préliminaires sur l’organisation corticale microstructurale comme l’espace neuropile et la division cellulaire dans des neurotransmetteurs clés et les neuropeptides impliqués dans le comportement social et la cognition. Bien que ces études sont dans leur enfance, les résultats montrent des différences d’organisation corticale importantes qui sont à la base des différences de comportement social, la communication et la cognition entre les bonobos et les chimpanzés.


2021 ◽  
pp. jnnp-2020-323541
Author(s):  
Jessica L Panman ◽  
Vikram Venkatraghavan ◽  
Emma L van der Ende ◽  
Rebecca M E Steketee ◽  
Lize C Jiskoot ◽  
...  

ObjectiveProgranulin-related frontotemporal dementia (FTD-GRN) is a fast progressive disease. Modelling the cascade of multimodal biomarker changes aids in understanding the aetiology of this disease and enables monitoring of individual mutation carriers. In this cross-sectional study, we estimated the temporal cascade of biomarker changes for FTD-GRN, in a data-driven way.MethodsWe included 56 presymptomatic and 35 symptomatic GRN mutation carriers, and 35 healthy non-carriers. Selected biomarkers were neurofilament light chain (NfL), grey matter volume, white matter microstructure and cognitive domains. We used discriminative event-based modelling to infer the cascade of biomarker changes in FTD-GRN and estimated individual disease severity through cross-validation. We derived the biomarker cascades in non-fluent variant primary progressive aphasia (nfvPPA) and behavioural variant FTD (bvFTD) to understand the differences between these phenotypes.ResultsLanguage functioning and NfL were the earliest abnormal biomarkers in FTD-GRN. White matter tracts were affected before grey matter volume, and the left hemisphere degenerated before the right. Based on individual disease severities, presymptomatic carriers could be delineated from symptomatic carriers with a sensitivity of 100% and specificity of 96.1%. The estimated disease severity strongly correlated with functional severity in nfvPPA, but not in bvFTD. In addition, the biomarker cascade in bvFTD showed more uncertainty than nfvPPA.ConclusionDegeneration of axons and language deficits are indicated to be the earliest biomarkers in FTD-GRN, with bvFTD being more heterogeneous in disease progression than nfvPPA. Our data-driven model could help identify presymptomatic GRN mutation carriers at risk of conversion to the clinical stage.


2020 ◽  
Author(s):  
A. Buhrmann ◽  
A. M. A. Brands ◽  
J. van der Grond ◽  
C. Schilder ◽  
R. C. van der Mast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document