scholarly journals Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Greeshmaja Govind ◽  
M. Jaleel Akhtar

Abstract Design of a reusable microfluidic sensor for blood glucose estimation at microwave frequencies is presented. The sensing unit primarily comprises a complementary electric LC (CELC) resonator, which is made reusable by filling the test sample in a glass capillary before mounting it inside a groove cut in the central arm of the resonator. The use of glass capillary in the present situation to contain the blood sample actually eliminates the possibility of any direct contact of the sensor with the test sample, and hence wards off any coincidental contamination of the sensor. Usage of the capillary provides additional benefits as only microliters of the sample are required, besides offering sterile measuring environment since these capillaries are disposable. The capillary made of borosilicate glass is highly biocompatible and exhibits exceptionally high chemical resistance in corrosive environments. Apart from reusability, the novelty of the proposed sensor also lies in its enhanced sensitivity which is quite an essential factor when it comes to the measurement of glucose concentration in the human physiological range. The applicability of the proposed scheme for glucose sensing is demonstrated by performing RF measurements of aqueous glucose solutions and goat blood samples using the fabricated sensor.

Diabetes Care ◽  
1986 ◽  
Vol 9 (3) ◽  
pp. 236-243 ◽  
Author(s):  
A. Freund ◽  
S. B. Johnson ◽  
A. Rosenbloom ◽  
B. Alexander ◽  
C. A. Hansen

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6820
Author(s):  
Bushra Alsunaidi ◽  
Murad Althobaiti ◽  
Mahbubunnabi Tamal ◽  
Waleed Albaker ◽  
Ibraheem Al-Naib

The prevalence of diabetes is increasing globally. More than 690 million cases of diabetes are expected worldwide by 2045. Continuous blood glucose monitoring is essential to control the disease and avoid long-term complications. Diabetics suffer on a daily basis with the traditional glucose monitors currently in use, which are invasive, painful, and cost-intensive. Therefore, the demand for non-invasive, painless, economical, and reliable approaches to monitor glucose levels is increasing. Since the last decades, many glucose sensing technologies have been developed. Researchers and scientists have been working on the enhancement of these technologies to achieve better results. This paper provides an updated review of some of the pioneering non-invasive optical techniques for monitoring blood glucose levels that have been proposed in the last six years, including a summary of state-of-the-art error analysis and validation techniques.


2012 ◽  
Vol 10 (8) ◽  
pp. 083002-83005 ◽  
Author(s):  
Wanjie Zhang Wanjie Zhang ◽  
Rong Liu Rong Liu ◽  
Wen Zhang Wen Zhang ◽  
Jiaxiang Zheng Jiaxiang Zheng ◽  
Kexin Xu Kexin Xu

1999 ◽  
Vol 45 (9) ◽  
pp. 1621-1627 ◽  
Author(s):  
Jason J Burmeister ◽  
Mark A Arnold

Abstract Six putative measurement sites were evaluated for noninvasive sensing of blood glucose by first-overtone near-infrared spectroscopy. The cheek, lower lip, upper lip, nasal septum, tongue, and webbing tissue between the thumb and forefinger were examined. These sites were evaluated on the basis of their chemical and physical properties as they pertain to the noninvasive measurement of glucose. Critical features included the effective optical pathlength of aqueous material within the tissue and the percentage of body fat within the optical path. Aqueous optical paths of 5 mm are required to measure clinically relevant concentrations of glucose in the first-overtone region. All of the tested sites met this requirement. The percentage of body fat affects the signal-to-noise ratio of the measurement and must be minimized for reliable glucose sensing. The webbing tissue contains a considerable amount of fat tissue and is clearly the worse measurement site. All other sites possess substantially less fat, with the least amount of fat in tongue tissue. For this reason, the tongue provides spectra with the highest signal-to-noise ratio and is, therefore, the site of choice on the basis of spectral quality.


2019 ◽  
Vol 19 (17) ◽  
pp. 7347-7354
Author(s):  
Pauline John ◽  
Nilesh J. Vasa ◽  
N. Sujatha ◽  
Suresh Ranga Rao

2011 ◽  
Author(s):  
Jingying Jiang ◽  
Lingling Zhang ◽  
Qiliang Gong ◽  
Kexin Xu

Sign in / Sign up

Export Citation Format

Share Document