scholarly journals The pattern, change and driven factors of vegetation cover in the Qin Mountains region

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Yuhan Guo ◽  
Yongqiang Zhang ◽  
Linan Guo

AbstractThe Qin Mountains region is one of the most important climatic boundaries that divide the North and South of China. This study investigates vegetation covers changes across the Qin Mountains region over the past three decades based on the Landsat-derived Normalized Difference Vegetation Index (NDVI), which were extracted from the Google Earth Engine (GEE). Our results show that the NDVI across the Qin Mountains have increased from 0.624 to 0.776 with annual change rates of 0.0053/a over the past 32 years. Besides, its abrupt point occurred in 2006 and the change rates after this point increased by 0.0094/a (R2 = 0.8159, p < 0.01) (2006–2018), which is higher than that in 1987–1999 and 1999–2006. The mean NDVI have changed in different elevation ranges. The NDVI in the areas below 3300 m increased, such increased is especially most obviously in the cropland. Most of the forest and grassland locate above 3300 m with higher increased rate. Before 2006, the temperature and reference evapotranspiration (PET) were the important driven factors of NDVI change below 3300 m. After afforestation, human activities become important factors that influenced NDVI changes in the low elevation area, but hydro-climatic factors still play an important role in NDVI increase in the higher elevations area.

2021 ◽  
Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.


2021 ◽  
Vol 13 (20) ◽  
pp. 4063
Author(s):  
Jie Xue ◽  
Yanyu Wang ◽  
Hongfen Teng ◽  
Nan Wang ◽  
Danlu Li ◽  
...  

Climate change has proven to have a profound impact on the growth of vegetation from various points of view. Understanding how vegetation changes and its response to climatic shift is of vital importance for describing their mutual relationships and projecting future land–climate interactions. Arid areas are considered to be regions that respond most strongly to climate change. Xinjiang, as a typical dryland in China, has received great attention lately for its unique ecological environment. However, comprehensive studies examining vegetation change and its driving factors across Xinjiang are rare. Here, we used the remote sensing datasets (MOD13A2 and TerraClimate) and data of meteorological stations to investigate the trends in the dynamic change in the Normalized Difference Vegetation Index (NDVI) and its response to climate change from 2000 to 2019 across Xinjiang based on the Google Earth platform. We found that the increment rates of growth-season mean and maximum NDVI were 0.0011 per year and 0.0013 per year, respectively, by averaging all of the pixels from the region. The results also showed that, compared with other land use types, cropland had the fastest greening rate, which was mainly distributed among the northern Tianshan Mountains and Southern Junggar Basin and the northern margin of the Tarim Basin. The vegetation browning areas primarily spread over the Ili River Valley where most grasslands were distributed. Moreover, there was a trend of warming and wetting across Xinjiang over the past 20 years; this was determined by analyzing the climate data. Through correlation analysis, we found that the contribution of precipitation to NDVI (R2 = 0.48) was greater than that of temperature to NDVI (R2 = 0.42) throughout Xinjiang. The Standardized Precipitation and Evapotranspiration Index (SPEI) was also computed to better investigate the correlation between climate change and vegetation growth in arid areas. Our results could improve the local management of dryland ecosystems and provide insights into the complex interaction between vegetation and climate change.


Author(s):  
Yixin Zhang ◽  
Guoce Xu ◽  
Peng Li ◽  
Zhanbin Li ◽  
Yun Wang ◽  
...  

As the “roof of the world”, the Tibetan Plateau (TP) is a unique geographical unit on Earth. In recent years, vegetation has gradually become a key factor reflecting the ecosystem since it is sensitive to ecological changes especially in arid and semi-arid areas. Based on the normalized difference vegetation index (NDVI) dataset of TP from 2000 to 2015, this study analyzed the characteristics of vegetation variation and the correlation between vegetation change and climatic factors at different time scales, based on a Mann–Kendall trend analyses, the Hurst exponent, and the Pettitt change-point test. The results showed that the vegetation fractional coverage (VFC) generally increased in the past 16 years, with 60.3% of the TP experiencing an increase, of which significant (p < 0.05) increases accounted for 28.79% and were mainly distributed in the north of the TP. Temperature had the largest response with the VFC on the seasonal scale. During the growing season, the correlation between precipitation and sunshine duration with VFC was high (p < 0.05). The change-points of the VFC were mainly distributed in the north of the TP during 2007–2009. Slope and elevation had an impact on the VFC; the areas with large vegetation change are mainly distributed in slopes <20° and elevation of 3000–5000 m. For elevation above 3000–4000 m, the response of the VFC to precipitation and temperature was the strongest. This study provided important information for ecological environment protection and ecosystem degradation on the Tibetan Plateau.


2020 ◽  
Vol 9 (2) ◽  
pp. 111 ◽  
Author(s):  
Hongzhu Han ◽  
Jianjun Bai ◽  
Gao Ma ◽  
Jianwu Yan

Vegetation phenology is highly sensitive to climate change, and the phenological responses of vegetation to climate factors vary over time and space. Research on the vegetation phenology in different climatic regimes will help clarify the key factors affecting vegetation changes. In this paper, based on a time-series reconstruction of Moderate-Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data using the Savitzky–Golay filtering method, the phenology parameters of vegetation were extracted, and the Spatio-temporal changes from 2001 to 2016 were analyzed. Moreover, the response characteristics of the vegetation phenology to climate changes, such as changes in temperature, precipitation, and sunshine hours, were discussed. The results showed that the responses of vegetation phenology to climatic factors varied within different climatic regimes and that the Spatio-temporal responses were primarily controlled by the local climatic and topographic conditions. The following were the three key findings. (1) The start of the growing season (SOS) has a regular variation with the latitude, and that in the north is later than that in the south. (2) In arid areas in the north, the SOS is mainly affected by the temperature, and the end of the growing season (EOS) is affected by precipitation, while in humid areas in the south, the SOS is mainly affected by precipitation, and the EOS is affected by the temperature. (3) Human activities play an important role in vegetation phenology changes. These findings would help predict and evaluate the stability of different ecosystems.


2018 ◽  
Vol 42 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Biao Zeng ◽  
Fuguang Zhang ◽  
Taibao Yang ◽  
Jiaguo Qi ◽  
Mihretab G Ghebrezgabher

Alpine sparsely vegetated areas (ASVAs) in mountains are sensitive to climate change and rarely studied. In this study, we focused on the response of ASVA distribution to climate change in the eastern Qilian Mountains (EQLM) from the 1990s to the 2010s. The ASVA distribution ranges in the EQLM during the past three decades were obtained from the Thematic Mapper remote sensing digital images by using the threshold of normalized difference vegetation index (NDVI) and artificial visual interpretation. Results indicated that the ASVA shrank gradually in the EQLM and lost its area by approximately 11.4% from the 1990s to the 2010s. The shrunken ASVA with markedly more area than the expanded one was mainly located at altitudes from 3700 m to 4300 m, which were comparatively lower than the average altitude of the ASVA distribution ranges. This condition led to the low ASVA boundaries in the EQLM moving upwards at a significant velocity of 22 m/decade at the regional scale. This vertical zonal process was modulated by topography-induced differences in local hydrothermal conditions. Thus, the ASVA shrank mainly in its lower parts with mild and sunny slopes. Annual maximum NDVI in the transition zone increased significantly and showed a stronger positive correlation with significantly increasing temperature than insignificant precipitation variations during 1990–2015. The ASVA shrinkage and up-shifting of its boundary were attributed to climate warming, which facilitated the upper part of alpine meadow in the EQLM by releasing the low temperature limitation on vegetation growth.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuyang Wang ◽  
Yuqiang Li ◽  
XinYuan Wang ◽  
Yulin Li ◽  
Jie Lian ◽  
...  

China faces some of the most serious desertification in the world, leading to many problems. To solve them, large-scale ecological restoration projects were implemented. To assess their effectiveness, we analyzed normalized-difference vegetation index (NDVI) data derived from SPOT VEGETATION and gridded climate datasets from 1998 to 2015 to detect the degrees of desertification and the effects of human and climate drivers on vegetation dynamics. We found that NDVI of desertified areas generally decreased before 2000, then increased. The annual increase in NDVI was fixed dunes (0.0013) = semi-fixed dunes (0.0013) &gt; semi-mobile dunes (0.0012) &gt; gobi (gravel) desert (0.0011) &gt; mobile dunes (0.0003) &gt; saline–alkali land (0.0000). The proportions of the area of each desert type in which NDVI increased were fixed dunes (43.4%) &gt; semi-mobile dunes (39.7%) &gt; semi-fixed dunes (26.7%) &gt; saline–alkali land (23.1%) &gt; gobi desert (14.4%) &gt; mobile dunes (12.5%). Thus, the vegetation response to the restoration efforts increased as the initial dune stability increased. The proportion of the area where desertification was dominated by temperature (1.8%) was far less than the area dominated by precipitation (14.1%). However, 67.6% of the change was driven by non-climatic factors. The effectiveness of the ecological restoration projects was significant in the Loess Plateau and in the Mu Us, Horqin, and Hulunbuir sandy lands. In contrast, there was little effect in the Badain Jaran, Ulan Buh, and Tengger deserts; in particular, vegetation cover has declined seriously in the Hunshandake Sandy Land and Alkin Desert Grassland. Thus, more or different ecological restoration must be implemented in these areas.


Rodriguésia ◽  
2021 ◽  
Vol 72 ◽  
Author(s):  
Santiago Martín Costas ◽  
Norma Canton ◽  
Juan Manuel Rodríguez

Abstract The altitudinal patterns of lichen communities in altitudinal gradients are very variable. The changes that occur along the mountains depend on climatic factors but also on microsite variables such as substrate type and aspect. The effect of altitude and aspect on richness, cover and composition of saxicolous lichens communities along an elevation gradient in extra Andean mountains from the central-west of Argentina was studied. Rock outcrops on the north and south aspect of three mountain summits distributed between 2,500 and 4,500 m.a.s.l. were sampled. Lichen species present in a 20 × 20 cm square were identified and the relative cover was measured using digital photography. Richness, cover and composition were analyzed through linear models and multivariate analysis. Fifty-eight saxicolous lichen species were identified between the three sites. Richness and cover were maximum at middle altitude. Also compositional differences among communities of each mountain summit were found. Finally, the effect of the aspect was significant at lower altitudes for cover and composition.


2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2020 ◽  
Vol 12 (10) ◽  
pp. 1546 ◽  
Author(s):  
Christopher Potter ◽  
Olivia Alexander

Understanding trends in vegetation phenology and growing season productivity at a regional scale is important for global change studies, particularly as linkages can be made between climate shifts and the vegetation’s potential to sequester or release carbon into the atmosphere. Trends and geographic patterns of change in vegetation growth and phenology from the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data sets were analyzed for the state of Alaska over the period 2000 to 2018. Phenology metrics derived from the MODIS Normalized Difference Vegetation Index (NDVI) time-series at 250 m resolution tracked changes in the total integrated greenness cover (TIN), maximum annual NDVI (MAXN), and start of the season timing (SOST) date over the past two decades. SOST trends showed significantly earlier seasonal vegetation greening (at more than one day per year) across the northeastern Brooks Range Mountains, on the Yukon-Kuskokwim coastal plain, and in the southern coastal areas of Alaska. TIN and MAXN have increased significantly across the western Arctic Coastal Plain and within the perimeters of most large wildfires of the Interior boreal region that burned since the year 2000, whereas TIN and MAXN have decreased notably in watersheds of Bristol Bay and in the Cook Inlet lowlands of southwestern Alaska, in the same regions where earlier-trending SOST was also detected. Mapping results from this MODIS time-series analysis have identified a new database of localized study locations across Alaska where vegetation phenology has recently shifted notably, and where land cover types and ecosystem processes could be changing rapidly.


Sign in / Sign up

Export Citation Format

Share Document