THE NORMALIZED DIFFERENCE VEGETATION INDEX AS AN INDICATOR OF DYNAMICS

Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.

Author(s):  
Sh. Bahramvash Shams

Recognition of paddy rice boundaries is an essential step for many agricultural processes such as yield estimation, cadastre and water management. In this study, an automatic rice paddy mapping is proposed. The algorithm is based on two temporal images: an initial period of flooding and after harvesting. The proposed method has several steps include: finding flooded pixels and masking unwanted pixels which contain water bodies, clouds, forests, and swamps. In order to achieve final paddy map, indexes such as Normalized Difference Vegetation Index (NDVI) and Land Surface Water Index (LSWI) are used. Validation is performed by rice paddy boundaries, which were drawn by an expert operator in Google maps. Due to this appraisal good agreement (close to 90%) is reached. The algorithm is applied to Gilan province located in the north part of Iran using Landsat 8 date 2013. Automatic Interface is designed based on proposed algorithm using Arc Engine and visual studio. In the Interface, inputs are Landsat bands of two time periods including: red (0.66 μm), blue (0.48 μm), NIR (0.87 μm), and SWIR (2.20 μm), which should be defined by user. The whole process will run automatically and the final result will provide paddy map of desire year.


2021 ◽  
Vol 22 (7) ◽  
Author(s):  
Lyès Moumeni ◽  
AMANDINE GASTEBOIS ◽  
LOUIZA GILLMANN ◽  
NICOLAS PAPON ◽  
FARIDA BENIA ◽  
...  

Abstract. Moumeni L, Gastebois A, Gillmann L, Papon N, Benia F, Bouchara J-P, Bounechada M. 2021. Investigating the prevalence of Bark beetles of Pinus halepensis in the North East semi-arid region of Algeria. Biodiversitas 22: 2755-2762. Aleppo pine is the most common tree in the semi-arid forests of Algeria. Despite its high resistance to drought and adaptability to all types of soils, the effects of climate change are affecting it directly and indirectly. Stressed trees indeed are subject to bark beetle attacks. In this study, we sampled the bark beetles directly from the affected pine trees. Six species belonging to the Scolytinae subfamily were identified. Tomicus detruens and Orthotomicus erosus were widely spread and present in the three studied forests, where they were found to colonize living trees while Crypturgus numidicus, Crypturgus mediterraneus, Hylurgus ligniperda and Hylurgus micklitzi colonized only dead trees. Together with future identification of the microfungi associated with these xylophagous insects, these data may help to define prevention measures to fight the decline of Aleppo pine forests observed in some parts of Eastern Algeria.


Author(s):  
Yixin Zhang ◽  
Guoce Xu ◽  
Peng Li ◽  
Zhanbin Li ◽  
Yun Wang ◽  
...  

As the “roof of the world”, the Tibetan Plateau (TP) is a unique geographical unit on Earth. In recent years, vegetation has gradually become a key factor reflecting the ecosystem since it is sensitive to ecological changes especially in arid and semi-arid areas. Based on the normalized difference vegetation index (NDVI) dataset of TP from 2000 to 2015, this study analyzed the characteristics of vegetation variation and the correlation between vegetation change and climatic factors at different time scales, based on a Mann–Kendall trend analyses, the Hurst exponent, and the Pettitt change-point test. The results showed that the vegetation fractional coverage (VFC) generally increased in the past 16 years, with 60.3% of the TP experiencing an increase, of which significant (p < 0.05) increases accounted for 28.79% and were mainly distributed in the north of the TP. Temperature had the largest response with the VFC on the seasonal scale. During the growing season, the correlation between precipitation and sunshine duration with VFC was high (p < 0.05). The change-points of the VFC were mainly distributed in the north of the TP during 2007–2009. Slope and elevation had an impact on the VFC; the areas with large vegetation change are mainly distributed in slopes <20° and elevation of 3000–5000 m. For elevation above 3000–4000 m, the response of the VFC to precipitation and temperature was the strongest. This study provided important information for ecological environment protection and ecosystem degradation on the Tibetan Plateau.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Yuhan Guo ◽  
Yongqiang Zhang ◽  
Linan Guo

AbstractThe Qin Mountains region is one of the most important climatic boundaries that divide the North and South of China. This study investigates vegetation covers changes across the Qin Mountains region over the past three decades based on the Landsat-derived Normalized Difference Vegetation Index (NDVI), which were extracted from the Google Earth Engine (GEE). Our results show that the NDVI across the Qin Mountains have increased from 0.624 to 0.776 with annual change rates of 0.0053/a over the past 32 years. Besides, its abrupt point occurred in 2006 and the change rates after this point increased by 0.0094/a (R2 = 0.8159, p < 0.01) (2006–2018), which is higher than that in 1987–1999 and 1999–2006. The mean NDVI have changed in different elevation ranges. The NDVI in the areas below 3300 m increased, such increased is especially most obviously in the cropland. Most of the forest and grassland locate above 3300 m with higher increased rate. Before 2006, the temperature and reference evapotranspiration (PET) were the important driven factors of NDVI change below 3300 m. After afforestation, human activities become important factors that influenced NDVI changes in the low elevation area, but hydro-climatic factors still play an important role in NDVI increase in the higher elevations area.


2020 ◽  
Vol 9 (2) ◽  
pp. 111 ◽  
Author(s):  
Hongzhu Han ◽  
Jianjun Bai ◽  
Gao Ma ◽  
Jianwu Yan

Vegetation phenology is highly sensitive to climate change, and the phenological responses of vegetation to climate factors vary over time and space. Research on the vegetation phenology in different climatic regimes will help clarify the key factors affecting vegetation changes. In this paper, based on a time-series reconstruction of Moderate-Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data using the Savitzky–Golay filtering method, the phenology parameters of vegetation were extracted, and the Spatio-temporal changes from 2001 to 2016 were analyzed. Moreover, the response characteristics of the vegetation phenology to climate changes, such as changes in temperature, precipitation, and sunshine hours, were discussed. The results showed that the responses of vegetation phenology to climatic factors varied within different climatic regimes and that the Spatio-temporal responses were primarily controlled by the local climatic and topographic conditions. The following were the three key findings. (1) The start of the growing season (SOS) has a regular variation with the latitude, and that in the north is later than that in the south. (2) In arid areas in the north, the SOS is mainly affected by the temperature, and the end of the growing season (EOS) is affected by precipitation, while in humid areas in the south, the SOS is mainly affected by precipitation, and the EOS is affected by the temperature. (3) Human activities play an important role in vegetation phenology changes. These findings would help predict and evaluate the stability of different ecosystems.


2020 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Ankita Pandey

Guwahati derives its name from the Assamese word “Guwa” means areca nut and “Haat” means market. However, the modern Guwahati had been known as the ancient Pragjyotishpura and was the capital of Assam under the Kamrupa kingdom. A beautiful city Guwahati is situated on the south bank of the river Bramhaputra. Moreover, It is known as the largest city in the Indian state of Assam and also the largest metropolis in North East India. It has also its importance as the gateway to the North- East India. Assamese and English are the spoken languages in Guwahati.  In 1667, the Mogul forces were defeated in the battle by the Ahom forces commanded by Lachut Barphukan. Thus, in a sense Guwahati became the bone of contention among the Ahoms, Kochas and the Moguls during the medieval period.  Guwahati the administrative headquarters of Lower Assam with a viceroy or Barbhukan was made by the Ahom king.  Since 1972 it has been the capital of Assam. The present paper will discuss the changes happened in Guwahati over the period of late 1970s till the present time. It will focus on the behavior of people, transformed temples, Panbazar of the city, river bank of Bramhaputra, old Fancy Bazaar, chaotic ways, festivals and seasons including a fifth man made season etc. It will also deal how over the years a city endowed with nature’s gifts and scenic views, has been changing as “a dirty city”. Furthermore, it will also present the insurgencies that have barged into the city. The occurrence of changes will be discussed through the perspective and point of view of Srutimala Duara as presented in her book Mindprints of Guwahati.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2021 ◽  
pp. 513
Author(s):  
Mohammad Slamet Sigit Prakoso ◽  
Rizki Dwi Safitri

Ruang Terbuka Hijau (RTH) adalah suatu tempat yang luas dan terbuka yang dimaksudkan untuk penghijauan suatu kota, di mana di dalamnya ditumbuhi pepohonan. Dalam analisis ruang terbuka hijau dapat menggunakan beberapa metode, di antaranya yaitu metode Normalized Difference Vegetation Index (NDVI) dan metode Maximum Likelihood Classification. Tujuan penelitian ini untuk mengetahui perbedaan hasil dari analisis metode NDVI dan Maximum Likelihood Classification yang digunakan untuk mengetahui ruang terbuka hijau di Kota Pekalongan. Metode yang digunakan pada penelitian ini yaitu dengan menggunakan metode NDVI dan metode Maximum Likelihood Classification. Data yang digunakan yaitu Citra Landsat 8 OLI. Pengolahan data menggunakan software Arcgis 10.3. Hasil dari pengolahan berupa peta ruang terbuka hijau dari masing - masing metode. Secara kuantitatif dari hasil perhitungan luas metode NDVI, luas permukiman sebesar 3.016,53 ha, persawahan 609,39 ha, hutan kota 573,3 ha, dan badan air seluas 482,04 ha. Sedangkan untuk metode Maximum Likelihood Classification didapatkan hasil luas permukiman 2.278,26 ha, persawahan 1.141,83 ha, hutan kota 738,18 ha, dan badan air seluas 522,99 ha. Berdasarkan luasan RTH terhadap luas Kota Pekalongan, pada metode NDVI sebesar 25,2%, sedangkan untuk metode Maximum Likelihood Classification sebesar 40,1%. Dari hasil analisis diperoleh perbedaan luasan yang cukup signifikan yaitu pada luasan persawahan dan permukiman. Perbedaan hasil analisis terjadi akibat perbedaan klasifikasi warna citra pada saat pengolahan data.


Sign in / Sign up

Export Citation Format

Share Document