scholarly journals Synthesis and molecular structure of perhalogenated rhenium-oxo corroles

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abraham B. Alemayehu ◽  
Rune F. Einrem ◽  
Laura J. McCormick-McPherson ◽  
Nicholas S. Settineri ◽  
Abhik Ghosh

AbstractAs part of our efforts to develop rhenium-oxo corroles as photosensitizers for oxygen sensing and photodynamic therapy, we investigated the potential β-perhalogenation of five ReO meso-tris(para-X-phenyl)corroles, Re[TpXPC](O) (X = CF3, H, F, CH3, and OCH3), with elemental chlorine and bromine. With Cl2, β-octachlorinated products Re[Cl8TpXPC](O) were rapidly obtained for X = CF3, H, and CH3, but X = OCH3 resulted in overchlorination on the meso-aryl groups. Full β-octabromination proved slower relative to Cu and Ir corroles, but the desired Re[Br8TpXPC](O) products were finally obtained for X = H and F after a week at room temperature. For X = CH3 and OCH3, these conditions led to undecabrominated products Re[Br11TpXPC](O). Compared to the β-unsubstituted starting materials, the β-octahalogenated products were found to exhibit sharp 1H NMR signals at room temperature, indicating that the aryl groups are locked in place by the β-halogens, and substantially redshifted Soret and Q bands. Single-crystal X-ray structures of Re[Cl8TpCF3PC](O), Re[Cl8TpCH3PC](O), and Re[Br8TpFPC](O) revealed mild saddling for one Cl8 structure and the Br8 structure. These structural variations, however, appear too insignificant to explain the slowness of the β-octabromination protocols, which seems best attributed to the deactivating influence of the high-valent Re center.

2005 ◽  
Vol 60 (5) ◽  
pp. 533-537 ◽  
Author(s):  
Konstantin A. Rufanov ◽  
Dominique M. M. Freckmann ◽  
Heinz-Jürgen Kroth ◽  
Stefan Schutte ◽  
Herbert Schumann

Lu(CH2SiMe3)3(THF)2 (2) decomposes slowly at room temperature with formation of Me4Si. In order to understand the mechanism of this elimination process, Lu(CH2SiMe3)3([D8]-THF)2 (1), Lu(CH2SiMe3)3(THF)(DME) (3), and Lu(CH2SiMe3)3(THF)(diglyme) (4) were prepared. The results of 1H NMR spectroscopic studies of the decomposition in solution exclude an α- as well as a β -H elimination mechanism and point towards a γ -H elimination. The molecular structure of 4 has been determined by single crystal X-ray diffraction.


2020 ◽  
Vol 42 (6) ◽  
pp. 928-928
Author(s):  
Fouzia Chang Fouzia Chang ◽  
Najma Memon Najma Memon ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Muhammad Naeem Ahmed Muhammad Naeem Ahmed ◽  
Muhammad Nawaz Tahir Muhammad Nawaz Tahir ◽  
...  

A novel Poly [bis-and#181;-3,5-dinitro-2-oxidobenzoato) (py) Cu II]/(C12H7CuN3O7) was synthesized by a self assemble method at room temperature. The molecular structure was determined by single-crystal X-ray analysis. The compound crystallizes in the monoclinic system, space group P 2 1/c with lattice parameters of a = 10.2143, b = 5.1651 and c = 26.608, α = 90, β = 99.720, γ = 90, Z = 4, V = 1383.60 (18) and#197;3.Pore size depicted from single crystal XRD data was 47and#197;. The central metal atom Cu (II) is coordinated with oxygen of carboxylates group and nitrogen atom of pyridine. The coordination polyhedron posses square pyramidal geometry is manifested by the N— Cu—O angle of 90o. The structure is composed of monomeric coordination units with the central copper (II) ion is not occupying a centre of symmetry.


1995 ◽  
Vol 73 (4) ◽  
pp. 471-482 ◽  
Author(s):  
Craig Anderson ◽  
André L. Beauchamp

The 1H NMR signals of the Ru(III) species present in solution are considerably broadened and shifted by paramagnetism, but they can be used to follow chloride displacement in the trans-[RuCl4Im2]− ion. This anion remains predominant for several hours at room temperature in D2O, but its signals are progressively replaced by those of a monoaqua [RuCl3(D2O)Im2] complex. Over a period of days, two new sets of peaks appear, corresponding to two isomers of [RuCl2(D2O)2Im2]+. The same behaviour is observed for the 1-methyl-and 4-methylimidazole analogues. These reactions can be driven backwards by addition of KCl, but [RuCl4Im2]− is not quantitatively regenerated in solution even for 6 M NaCl. Within several months, the [RuCl2(D2O)2Im2]+ isomers further aquate to a single species [RuCl(D2O)3Im2]2+. In CD3OD, displacement of the first chloride of [RuCl4Im2]− takes place faster, over several hours, but substitution stops at the [RuCl3(CD3OD)Im2] stage. In DMSO, substitution occurs very slowly. The [RuCl3(DMSO)Im2]:[RuCl4Im2]−mixture (1:2) obtained after 12 days starts to show very slow reduction to two Ru(II) species, one of which precipitates as yellow crystals. From X-ray diffraction work (monoclinic, P21/n, a = 9.951, b = 8.564, c = 10.527 Å, β = 92.95°, R = 0.033), the compound was identified as [RuCl2(DMSO-d6)2Im2], where the metal has a trans-trans-trans coordination and the DMSO ligands are S-bonded. Keywords: paramagnetic ruthenium anion, solvolysis, chloro complexes.


2015 ◽  
Vol 93 (6) ◽  
pp. 594-601 ◽  
Author(s):  
Arek Keuchguerian ◽  
Berline Mougang-Soume ◽  
Frank Schaper ◽  
Davit Zargarian

This report presents the results of a study on the preparation of iron alkoxide complexes chelated by diiminopyridine ligands and their role in the room temperature polymerization of rac-lactide. Reaction of N,N′-(p-R-C6H4CH2)2-diiminopyridines (R = H (1), F (2)) with FeX2 (X = Cl, Br) yielded the homoleptic complexes [(1)2Fe][FeX4] or [(2)2Fe][FeX4], respectively. Treating the latter with Na[BPh4] afforded the anion exchange product [(2)2Fe][BPh4]2, which was characterized by 1H NMR and absorption spectroscopy, combustion analysis, and single crystal X-ray diffraction. Various attempts to grow crystals of [(1)2Fe][FeX4] and [(2)2Fe][FeX4] culminated in the isolation of single crystals of [(2)2Fe][Cl6Fe2O] that was characterized by X-ray diffraction. Attempted synthesis of well-defined, mononuclear alkoxide derivatives from [(1)2Fe]2+ or [(2)2Fe]2+ gave mostly intractable products, but in one case we obtained the crystallographically characterized sodium iron cluster Na4Fe2(OC6H4F)8(THF)2. An aryloxide derivative proved accessible by reaction of NaOC6H4F with the mono-ligand precursor LFeCl2 (L = N,N′-dimesityl-diiminopyridine), but characterization of LFe(OC6H4F)2 was limited to a single crystal X-ray diffraction analysis, owing to unsuccessful attempts at isolating pure samples. The difficulties encountered in the isolation of pure alkoxide derivatives prompted us to use in-situ generated LFe(OEt)2 for studying the polymerization of rac-lactide. This system was found to be moderately active at room temperature and with a slight preference for the formation of a heterotactic polymer (Pr = 0.54–0.65). Large polydispersities of 1.5–2.0 indicated the presence of transesterification side-reactions, which were confirmed by the presence of peaks with m/z = n 144 + M(EtOH) + M(Na+) and m/z = (n + 0.5) 144 + M(EtOH) + M(Na+) in MALDI-MS.


2003 ◽  
Vol 58 (5) ◽  
pp. 389-394 ◽  
Author(s):  
Alexander A. Trifonov ◽  
Mikhail N. Bochkarev ◽  
Herbert Schumann ◽  
Sebastian Dechert

Racemic trans-2-(9(H)-fluoren-9-yl)cyclohexanol, C13H9-cyclo-C6H10-OH (1), reacts with two equivalents of potassium naphthalenide in THF to give the dipotassium salt [C13H8-cyclo-C6H10-O]- K2(THF) (2). Recrystallization of 2 from pyridine affords the solvent free salt [C13H8-cyclo-C6H10- O]K2 (3). The reactions of LaI3(THF)4 with one equivalent of 2 or of YbI2(THF)2 with equimolar amounts of 2 produce the alkoxolanthanum diiodide (C13H9-cyclo-C6H10-O)LaI2(DME)2 (4) and the ytterbium dialkoxide (C13H9-cyclo-C6H10-O)2Yb(THF)0.5(5), respectively. [(Me3Si)2N]3Y reacts with three equivalents of 1 with elimination of hexamethyldisilazane and formation of the yttrium trialkoxide (C13H9-cyclo-C6H10-O)3Y (6). The compounds 2 to 5 were characterized by elemental analyses, 1H NMR, 13C NMR and IR spectra. The molecular structure of 4 was determined by single crystal X-ray diffraction.


1982 ◽  
Vol 37 (10) ◽  
pp. 1230-1233 ◽  
Author(s):  
Günter Schmid ◽  
Roland Boese ◽  
Dieter Bläser

Abstract Tris(dimethylamino)borane, X-ray The crystal and molecular structure of tris(dimethylamino)borane, a liquid at room temperature, has been determined by single-crystal X-ray diffraction methods at - 116°C. The single-crystal growth was accomplished by means of a miniature zone melting process on the diffractometer. The structure data are compared with those of other aminoboranes.


1998 ◽  
Vol 51 (1) ◽  
pp. 67 ◽  
Author(s):  
Robert D. Hart ◽  
Peter C. Healy ◽  
Michelle L. Peake ◽  
Allan H. White

The crystal and molecular structure of the 2 : 1 triphenylphosphine copper(I) benzoate complex [(PPh3)2CuO2CC6H5] have been determined by a room-temperature single-crystal X-ray study. The complex is isomorphous with the dithiobenzoate analogue, crystallizing in the orthorhombic space group P212121 with a 20·094(5), b 16·929(9), c 10·659(8) Å, Z 4; conventional R on |F| was 0·039 for 4261 independent ‘observed’ (I > 3σ(I)) reflections. Comparison of structural data for this and other [(PPh3)2CuO2CR] complexes shows that the P–Cu–P angle and the anion coordination are dependent on both the donor strength of the anion and on steric interactions between the anion and the triphenylphosphine ligands. The structure of the analogous nitrate complex [(PPh3)2CuNO3] has also been redetermined.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1321
Author(s):  
Yasunobu Asawa ◽  
Aleksandra V. Arsent’eva ◽  
Sergey A. Anufriev ◽  
Alexei A. Anisimov ◽  
Kyrill Yu. Suponitsky ◽  
...  

Bis(carboranyl)amides 1,1′-μ-(CH2NH(O)C(CH2)n-1,2-C2B10H11)2 (n = 0, 1) were prepared by the reactions of the corresponding carboranyl acyl chlorides with ethylenediamine. Crystal molecular structure of 1,1′-μ-(CH2NH(O)C-1,2-C2B10H11)2 was determined by single crystal X-ray diffraction. Treatment of bis(carboranyl)amides 1,1′-μ-(CH2NH(O)C(CH2)n-1,2-C2B10H11)2 with ammonium or cesium fluoride results in partial deboronation of the ortho-carborane cages to the nido-carborane ones with formation of [7,7′(8′)-μ-(CH2NH(O)C(CH2)n-7,8-C2B9H11)2]2−. The attempted reaction of [7,7′(8′)-μ-(CH2NH(O)CCH2-7,8-C2B9H11)2]2− with GdCl3 in 1,2-dimethoxy- ethane did not give the expected metallacarborane. The stability of different conformations of Gd-containing metallacarboranes has been estimated by quantum-chemical calculations using [3,3-μ-DME-3,3′-Gd(1,2-C2B9H11)2]− as a model. It was found that in the most stable conformation the CH groups of the dicarbollide ligands are in anti,anti-orientation with respect to the DME ligand, while any rotation of the dicarbollide ligand reduces the stability of the system. This makes it possible to rationalize the design of carborane ligands for the synthesis of gadolinium metallacarboranes on their base.


Sign in / Sign up

Export Citation Format

Share Document