scholarly journals Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
T. G. Mastenbroek ◽  
M. F. A. Karel ◽  
M. Nagy ◽  
W. Chayoua ◽  
E. I. J. Korsten ◽  
...  

Abstract While in recent trials the dual pathway inhibition with aspirin plus rivaroxaban has shown to be efficacious in patients with atherosclerotic cardiovascular disease, little is known about the effects of this combination treatment on thrombus formation and vascular remodelling upon vascular damage. The aim of this study was to examine the effects of aspirin and/or rivaroxaban on injury-induced murine arterial thrombus formation in vivo and in vitro, vessel-wall remodelling, and platelet-leukocyte aggregates. Temporary ligation of the carotid artery of C57BL/6 mice, fed a western type diet, led to endothelial denudation and sub-occlusive thrombus formation. At the site of ligation, the vessel wall stiffened and the intima-media thickened. Aspirin treatment antagonized vascular stiffening and rivaroxaban treatment led to a positive trend towards reduced stiffening. Local intima-media thickening was antagonized by both aspirin or rivaroxaban treatment. Platelet-leukocyte aggregates and the number of platelets per leukocyte were reduced in aspirin and/or rivaroxaban treatment groups. Furthermore, rivaroxaban restricted thrombus growth and height in vitro. In sum, this study shows vascular protective effects of aspirin and rivaroxaban, upon vascular injury of the mouse artery.

2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Hua Chen ◽  
Dongxia Liu ◽  
Lan Ge ◽  
Tao Wang ◽  
Zhenzhen Ma ◽  
...  

AbstractCatestatin (CTS), a catecholamine-release inhibitory peptide, exerts pleiotropic cardiac protective effects. Pulmonary embolism caused by deep vein thrombosis involving vascular dysfunction. The present study aims to investigate the effects of CTS on thrombus formation that may inhibit the development of pulmonary embolism and its potential pathway. Acute pulmonary embolism (APE) model was developed as an in vivo model. The effects of CTS on mice with APE were examined. Human pulmonary artery endothelial cells (HPAECs) were pretreated with CTS before thrombin stimulation, and endothelial inflammation and underlying mechanisms were evaluated in vitro. That plasma CTS level was decreased in APE mice, while the number of platelets was significantly increased. The decreased circulating CTS level negatively associated with the number of platelets. CTS administration increased the survival rate of APE mice and protected against microvascular thrombosis in lung. APE-induced the increase in platelets number and plasma von Willebrand factor (VWF) were inhibited by CTS. Platelets from CTS-treated APE mice showed impaired agonist-induced platelets aggregation and spreading. CTS also ameliorated APE-induced the systemic inflammatory response. In in vivo study, thrombin-induced the increase in inflammation, TLR-4 expression and p38 phosphorylation were abrogated by CTS in HPAECs. Furthermore, TLR-4 overexpression inhibited the effect of CTS on VWF release and inflammation in HPAECs. Collectively, CTS increases thrombus resolution by attenuating endothelial inflammation at partially via inhibiting TLR-4-p38 pathway. The present study may provide a novel approach for anti-thrombosis.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Sharlene M. Day ◽  
Jennifer L. Reeve ◽  
Brian Pedersen ◽  
Diana M Farris ◽  
Daniel D. Myers ◽  
...  

Abstract Leukocytes and leukocyte-derived microparticles contain low levels of tissue factor (TF) and incorporate into forming thrombi. Although this circulating pool of TF has been proposed to play a key role in thrombosis, its functional significance relative to that of vascular wall TF is poorly defined. We tested the hypothesis that leukocyte-derived TF contributes to thrombus formation in vivo. Compared to wild-type mice, mice with severe TF deficiency (ie, TF–/–, hTF-Tg+, or “low-TF”) demonstrated markedly impaired thrombus formation after carotid artery injury or inferior vena cava ligation. A bone marrow transplantation strategy was used to modulate levels of leukocyte-derived TF. Transplantation of low-TF marrow into wild-type mice did not suppress arterial or venous thrombus formation. Similarly, transplantation of wild-type marrow into low-TF mice did not accelerate thrombosis. In vitro analyses revealed that TF activity in the blood was very low and was markedly exceeded by that present in the vessel wall. Therefore, our results suggest that thrombus formation in the arterial and venous macrovasculature is driven primarily by TF derived from the blood vessel wall as opposed to leukocytes.


1977 ◽  
Author(s):  
R. Wiedemann ◽  
W. Weichert ◽  
K. Breddin

The film presents observations in small mesenteric vessels (diameter 10-20 μm) of the rat using high power Nomarski optics. Under stasis conditions platelets appear as flat discs. Leucocytes are often seen creeping slowly along the intact vessel wall. Vascular lesions are produced with a focused laser beam (Hadron 513 biolaser). Immediately after the lesion platelets stick to the site of the microburn either in their native disc like shape without apparent morphologic changes or with protrusions. Within seconds these platelets swell and form protrusions. After 3-10 min, depending on the size of the lesion the vessel is occluded by a platelet thrombus. Platelets undergo further swelling. Later the thrombus is partially or completely swept away and the vessel is recanal i zed. Irreversible fusion of platelets is rarely observed. . New, usually smaller thrombi form at the damaged vessel wall. The morphologic platelet changes observed differ markedly from the changes observed during aggregation in vitro. After injection of a new antithrombotic substance (Bay G 7565) the adhesion of platelets to the damaged area is remarkably diminished. The few platelets which adhere to the site of injury show the same swelling and transformation like in untreated animals. The film demonstrates that it is possible to investigate morphologic changes of single platelets during thrombus formation. It seems possible to adapt this model for the in vivo study of antithrombotic drugs.


2021 ◽  
Vol 22 (22) ◽  
pp. 12168
Author(s):  
Henrike Hoermann ◽  
Irena Krueger ◽  
Nadine Maurus ◽  
Friedrich Reusswig ◽  
Yi Sun ◽  
...  

Background: Vascular injury induces the exposure of subendothelial extracellular matrix (ECM) important to serve as substrate for platelets to adhere to the injured vessel wall to avoid massive blood loss. Different ECM proteins are known to initiate platelet adhesion and activation. In atherosclerotic mice, the small, leucine-rich proteoglycan biglycan is important for the regulation of thrombin activity via heparin cofactor II. However, nothing is known about the role of biglycan for hemostasis and thrombosis under nonatherosclerotic conditions. Methods: The role of biglycan for platelet adhesion and thrombus formation was investigated using a recombinant protein and biglycan knockout mice. Results: The present study identified biglycan as important ECM protein for the adhesion and activation of platelets, and the formation of three-dimensional thrombi under flow conditions. Platelet adhesion to immobilized biglycan induces the reorganization of the platelet cytoskeleton. Mechanistically, biglycan binds and activates the major collagen receptor glycoprotein (GP)VI, because reduced platelet adhesion to recombinant biglycan was observed when GPVI was blocked and enhanced tyrosine phosphorylation in a GPVI-dependent manner was observed when platelets were stimulated with biglycan. In vivo, the deficiency of biglycan resulted in reduced platelet adhesion to the injured carotid artery and prolonged bleeding times. Conclusions: Loss of biglycan in the vessel wall of mice but not in platelets led to reduced platelet adhesion at the injured carotid artery and prolonged bleeding times, suggesting a crucial role for biglycan as ECM protein that binds and activates platelets via GPVI upon vessel injury.


1987 ◽  
Author(s):  
T Fujimori ◽  
T Saeki ◽  
K Harada ◽  
M Sato ◽  
N Ohshima

A new agent developed in our laboratory, 4-cyano-5,5-bis(4-methoxyphenyl)-4-pentenoic acid (E-5510), suppressed various human platelet functions in vitro. The compound also showed quite potent ex vivo anti-platelet effects in many experimentalanimals. It is well known that anti-platelet effects are not always parallel to anti-thrombotic effects. Thus, in order to predict the efficacy of E-5510 in thrombotic disorders, the anti-thrombotic effects were examined in 3 different animal models of thrombosis.(1) Anti-thrombotic effect in an extracorporeal shunt model Two hrs after oral administration of the drug to guinea pigs,an extracorporeal shunt between the right carotid artery and the left jugular vein was performed. The thrombus formation on a silk thread inserted in the shunt tube was quantitated by measuring the time from the onset of circulation to the stenosis of blood flow. E-5510 dose-dependently inhibited thrombus formation, the minimum effective dose being 0.03 mg/kg.(2) Effect on microthrombus formation in mesenteric arteriole In order to evaluate the effect on intravascular platelet thrombus formation, thrombosis was induced in vivo in mesenteric arteriole in guinea pigs with filtered light from a mercury lamp and an intravenous fluorescent dye in an intravital microscope system (M. Sato and N. Ohshima, Thromb. Res.,35, 319, 1984). The thrombus formation was quantitated by measuring the time taken for circulating platelets to begin to adhere to vessel wall and the time taken for blood flow to stop completely due to fully developed thrombus. Both the time required for platelet adhesion to vessel wall and for platelet thrombus formation were significantly prolonged after oral administration of E-5510.(3) Effect on pulmonary thromboembolism Acute pulmonary thromboembolism was induced in mice by a bolus intravenous injection of arachidonic acid, and mortality was determined 3 min later. E-5510 dose-dependently reduced pulmonary thromboembolic mortality, and its ED50 was 0.11 mg/kg. The results described above indicate thatE-5510 may have beneficial effects in clinical treatments of thrombotic disease.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 31-31
Author(s):  
Wei Zhang ◽  
Dawei Bu ◽  
Suying Dang ◽  
Tao Hong ◽  
Thomas Wisniewski

Abstract HIV-ITP patients have a unique antibody (Ab) against platelet GPIIIa49-66 which induces oxidative platelet fragmentation in the absence of complement (Cell 106: 551, 2001; JCI 113: 973, 2004). The search for a physiologic ligand that could induce this reaction was undertaken by panning the GPIIIa49-66 peptide with a phage surface display 7-mer peptide library. From 20 positive clones, 1 had 70% identity with a C-terminal region of ADAMTS-18 (a disintegrin and metalloproteinase with thrombospondin (TSR)-like motif 18), which is secreted by endothelial cell (EC). The recombinant C-terminal fragment of ADAMTS-18 can completely dissolve platelet aggregates formed in vitro. Moreover, this fragment lyses thrombi formed in the cerebral artery of mice and reduces infarction and neurologic impairment in murine ischemic stroke model (Blood 113: 6051, 2009). However, whether ADAMTS-18 represents the dominant physiologic mechanism controlling thrombus dissolution in vivo remains to be clarified. Here, we used ADAMTS-18-deficient (ADAMTS-18-/-) mice to study the contributions of ADAMTS-18 to thrombus formation in vivo. To investigate possible functional differences between WT and ADAMTS-18-/- platelets, we tested WT and ADAMTS-18-/- platelets in a model of pulmonary thromboembolism induced by infusion of a mixture of platelet agonist collagen (25 µg per mouse) and epinephrine (1 µg per mouse). In lung tissue Hematoxylin and eosin-stained (HE) slides, the mean number of thrombi per lung was same in the ADAMTS-18-/- group compared with WT group (163.7 ±14.38 vs 174.9 ±11.73, n=30/group, P=0.5480). In vitro, there is no difference between WT and ADAMTS-18-/- platelet aggregation trace and activation initiated by various platelet agonists ADP (10 µM) or collagen (2 µg/mL). No difference was noted on WT and ADAMTS-18-/- platelet adhesion on immobilized ligand (fibrinogen). These results indicated ADAMTS-18 had no effect on platelet function. We next evaluate the effect of ADAMTS-18 on thrombus formation in a second well-established carotid artery thrombosis model, which is induced by 10% FeCl3 patch. In the process of surgical operation, we unexpectedly observed that all ADAMTS-18-/- mice have premature common carotid artery bifurcation compared with WT mice. A Doppler flow monitor showed ADAMTS-18-/- mice exhibited significantly reduced carotid artery blood flow than WT mice (ADAMTS-18-/- vs WT, 0.5 ± 0.11 vs 0.75 ± 0.21 mL/min, n=7/group, P=0.0298), which results in shortened time of thrombus formation (ADAMTS-18-/- vs WT, 452.17 ± 68.88 vs 611.43 ± 92.02 sec, n=7/group, P=0.0005 ). Immunohistochemistry staining showed that the common carotid artery of ADAMTS-18-/- mice had increased adventitial collagen deposition compared with WT mice. In vivo matrigel plug assay demonstrated that ADAMTS-18-/- mice had significantly lower density of blood vessels compared to the WT mice. Since the middle cerebral artery arises from the internal carotid artery, we conjecture that ADAMTS-18-/- mice would have aggravated brain infarction for the less cerebral blood flow supplying. This proved to be true. In transient middle cerebral artery occlusion (tMCAO) model, the infarction size in ADAMTS-18-/- mice was significantly larger than in WT mice (mean infarction %, 25.68 ± 4.13 vs 17.41 ± 3.24, n=8, P=0.0012). Taken together, these observations suggest vasculature is the potential site of action of ADAMTS-18. To our knowledge, this is the first validation study of linkage and association of ADAMTS-18 as a pro-vasculature gene that is related to aggravated thrombosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 111 (8) ◽  
pp. 4118-4125 ◽  
Author(s):  
Li He ◽  
Tusar K. Giri ◽  
Cristina P. Vicente ◽  
Douglas M. Tollefsen

AbstractHeparin cofactor II (HCII)–deficient mice form occlusive thrombi more rapidly than do wild-type mice following injury to the carotid arterial endothelium. Dermatan sulfate (DS) and heparan sulfate (HS) increase the rate of inhibition of thrombin by HCII in vitro, but it is unknown whether vascular glycosaminoglycans play a role in the antithrombotic effect of HCII in vivo. In this study, we found that intravenous injection of either wild-type recombinant HCII or a variant with low affinity for HS (K173H) corrected the abnormally short thrombosis time of HCII-deficient mice, while a variant with low affinity for DS (R189H) had no effect. When HCII was incubated with frozen sections of the mouse carotid artery, it bound specifically to DS in the adventitia. HCII was undetectable in the wall of the uninjured carotid artery, but it became concentrated in the adventitia following endothelial injury. These results support the hypothesis that HCII interacts with DS in the vessel wall after disruption of the endothelium and that this interaction regulates thrombus formation in vivo.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


Sign in / Sign up

Export Citation Format

Share Document