scholarly journals European landrace diversity for common bean biofortification: a genome-wide association study

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Leonardo Caproni ◽  
Lorenzo Raggi ◽  
Elise F. Talsma ◽  
Peter Wenzl ◽  
Valeria Negri

AbstractMineral deficiencies represent a global challenge that needs to be urgently addressed. An adequate intake of iron and zinc results in a balanced diet that reduces chances of impairment of many metabolic processes that can lead to clinical consequences. In plants, bioavailability of such nutrients is reduced by presence of compounds such as phytic acid, that can chelate minerals and reduce their absorption. Biofortification of common bean (Phaseolus vulgaris L.) represents an important strategy to reduce mineral deficiencies, especially in areas of the world where this crop plays a key role in the diet. In this study, a panel of diversity encompassing 192 homozygous genotypes, was screened for iron, zinc and phytate seed content. Results indicate a broad variation of these traits and allowed the identification of accessions reasonably carrying favourable trait combinations. A significant association between zinc seed content and some molecular SNP markers co-located on the common bean Pv01 chromosome was detected by means of genome-wide association analysis. The gene Phvul001G233500, encoding for an E3 ubiquitin-protein ligase, is proposed to explain detected associations. This result represents a preliminary evidence that can foster future research aiming at understanding the genetic mechanisms behind zinc accumulation in beans.

Genome ◽  
2015 ◽  
Vol 58 (12) ◽  
pp. 549-557 ◽  
Author(s):  
Everestus C. Akanno ◽  
Graham Plastow ◽  
Carolyn Fitzsimmons ◽  
Stephen P. Miller ◽  
Vern Baron ◽  
...  

The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5–7, 9, 13–16, 19–21, 24, 25, and 27–29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dennis Katuuramu ◽  
Sandra Branham ◽  
Amnon Levi ◽  
Patrick Wechter

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas Citrullus amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 - 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding disease resistance proteins, leucine-rich repeat receptor-like protein kinase, and WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


2019 ◽  
Vol 70 (18) ◽  
pp. 4849-4864 ◽  
Author(s):  
Jingyang Gao ◽  
Songfeng Wang ◽  
Zijian Zhou ◽  
Shiwei Wang ◽  
Chaopei Dong ◽  
...  

AbstractIt is predicted that high-temperature stress will increasingly affect crop yields worldwide as a result of climate change. In order to determine the genetic basis of thermotolerance of seed-set in maize under field conditions, we performed mapping of quantitative trait loci (QTLs) in a recombinant inbred line (RIL) population using a collection of 8329 specifically developed high-density single-nucleotide polymorphism (SNP) markers, combined with a genome-wide association study (GWAS) of 261 diverse maize lines using 259 973 SNPs. In total, four QTLs and 17 genes associated with 42 SNPs related to thermotolerance of seed-set were identified. Among them, four candidate genes were found in both linkage mapping and GWAS. Thermotolerance of seed-set was increased significantly in near-isogenic lines (NILs) that incorporated the four candidate genes in a susceptible parent background. The expression profiles of two of the four genes showed that they were induced by high temperatures in the maize tassel in a tolerant parent background. Our results indicate that thermotolerance of maize seed-set is regulated by multiple genes each of which has minor effects, with calcium signaling playing a central role. The genes identified may be exploited in breeding programs to improve seed-set and yield of maize under heat stress.


Author(s):  
Alejandro Alonso-Díaz ◽  
Santosh B Satbhai ◽  
Roger de Pedro-Jové ◽  
Hannah M Berry ◽  
Christian Göschl ◽  
...  

Abstract Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host’s root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated to the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a Genome-Wide Association Study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role of cytokinin in root immunity, paving the way for future research that will help understanding the mechanisms underpinning root defenses.


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 25-33
Author(s):  
M. Ruiz ◽  
E.A. Rossi ◽  
N.C. Bonamico ◽  
M.G. Balzarini

Maize (Zea Mays L.) production has been greatly benefited from the improvement of inbred lines in regard to the resistance to diseases. However, the absence of resistant genotypes to bacteriosis is remarkable. The aim of the study was to identify genomic regions for resistance to Mal de Río Cuarto (MRC) and to bacterial disease (BD) in a diverse maize germplasm evaluated in the Argentinian region where MRC virus is endemic. A maize diverse population was assessed for both diseases during the 2019-2020 crop season. Incidence and severity of MRC and BD were estimated for each line and a genome wide association study (GWAS) was conducted with 78,376 SNP markers. A multi-trait mixed linear model was used for simultaneous evaluation of resistance to MRC and BD in the scored lines. The germplasm showed high genetic variability for both MRC and BD resistance. No significant genetic correlation was observed between the response to both diseases. Promising genomic regions for resistance to MRC and BD were identified and will be confirmed in further trials. Key words: maize disease; genome wide association study; SNP; multi-trait model


2021 ◽  
Vol 32 (Issue 1) ◽  
pp. 25-33
Author(s):  
M. Ruiz ◽  
E.A. Ross ◽  
N.C. Bonamico ◽  
M.G. Balzarini

Maize (Zea Mays L.) production has been greatly benefited from the improvement of inbred lines in regard to the resistance to diseases. However, the absence of resistant genotypes to bacteriosis is remarkable. The aim of the study was to identify genomic regions for resistance to Mal de Río Cuarto (MRC) and to bacterial disease (BD) in a diverse maize germplasm evaluated in the Argentinian region where MRC virus is endemic. A maize diverse population was assessed for both diseases during the 2019-2020 crop season. Incidence and severity of MRC and BD were estimated for each line and a genome wide association study (GWAS) was conducted with 78,376 SNP markers. A multi-trait mixed linear model was used for simultaneous evaluation of resistance to MRC and BD in the scored lines. The germplasm showed high genetic variability for both MRC and BD resistance. No significant genetic correlation was observed between the response to both diseases. Promising genomic regions for resistance to MRC and BD were identified and will be confirmed in further trials. Key words: maize disease; genome wide association study; SNP; multi-trait model


2019 ◽  
Author(s):  
Wenjing Hu ◽  
Derong Gao ◽  
Hongya Wu ◽  
Jian Liu ◽  
Chunmei Zhang ◽  
...  

Abstract Background: Fusarium head blight (FHB), primarily caused by Fusarium graminearum, is a major threat to wheat production and food security worldwide. Breeding stably and durably resistant cultivars is the most effective approach for managing and controlling the disease. The success of FHB resistance breeding relies on identification of an effective resistant germplasm. We performed a genome-wide association study (GWAS) using the high-density wheat 90K single nucleotide polymorphism (SNP) assays to better understand the genetic basis of FHB resistance in natural population and identify associated molecular markers. Results: The resistance to FHB fungal spread along the rachis (Type II resistance) was evaluated on 171 wheat cultivars in the 2016-2017 (abbr. as 2017) and 2017-2018 (abbr. as 2018) growing seasons. Using Illumina Infinum iSelect 90K SNP genotyping data, a genome-wide association study (GWAS) identified 26 loci (88 marker-trait associations), which explained 6.65-14.18% of the phenotypic variances. The associated loci distributed across all chromosomes except 2D, 6A, 6D and 7D, with those on chromosomes 1B, 4A, 5D and 7A being detected in both years. New loci for Type II resistance were found on syntenic genomic regions of chromsome 4AL (QFhb-4AL, 621.85-622.24 Mb) and chromosome 5DL (QFhb-5DL, 546.09-547.27 Mb) which showed high collinearity in gene content and order. SNP markers wsnp_JD_c4438_5568170 and wsnp_CAP11_c209_198467 of 5D, reported previously linked to a soil-borne wheat mosaic virus (SBWMV) resistance gene, were also associated with FHB resistance in this study. Conclusion: The syntenic FHB resistant loci and associated SNP markers identified in this study are valuable for FHB resistance breeding via marker-assisted selection.


2020 ◽  
Vol 61 (7) ◽  
pp. 1285-1296
Author(s):  
Lorraine Mhoswa ◽  
Marja M O’Neill ◽  
Makobatjatji M Mphahlele ◽  
Caryn N Oates ◽  
Kitt G Payn ◽  
...  

Abstract The galling insect, Leptocybe invasa, causes significant losses in plantations of various Eucalyptus species and hybrids, threatening its economic viability. We applied a genome-wide association study (GWAS) to identify single-nucleotide polymorphism (SNP) markers associated with resistance to L. invasa. A total of 563 insect-challenged Eucalyptus grandis trees, from 61 half-sib families, were genotyped using the EUChip60K SNP chip, and we identified 15,445 informative SNP markers in the test population. Multi-locus mixed-model (MLMM) analysis identified 35 SNP markers putatively associated with resistance to L. invasa based on four discreet classes of insect damage scores: (0) not infested, (1) infested showing evidence of oviposition but no gall development, (2) infested with galls on leaves, midribs or petioles and (3) stunting and lethal gall formation. MLMM analysis identified three associated genomic regions on chromosomes 3, 7 and 8 jointly explaining 17.6% of the total phenotypic variation. SNP analysis of a validation population of 494 E. grandis trees confirmed seven SNP markers that were also detected in the initial association analysis. Based on transcriptome profiles of resistant and susceptible genotypes from an independent experiment, we identified several putative candidate genes in associated genomic loci including Nucleotide-binding ARC- domain (NB-ARC) and toll-interleukin-1-receptor-Nucleotide binding signal- Leucine rich repeat (TIR-NBS-LRR) genes. Our results suggest that Leptocybe resistance in E. grandis may be influenced by a few large-effect loci in combination with minor effect loci segregating in our test and validation populations.


2012 ◽  
Vol 15 (6) ◽  
pp. 767-774 ◽  
Author(s):  
Michael B. Miller ◽  
Saonli Basu ◽  
Julie Cunningham ◽  
Eleazar Eskin ◽  
Steven M. Malone ◽  
...  

As part of the Genes, Environment and Development Initiative, the Minnesota Center for Twin and Family Research (MCTFR) undertook a genome-wide association study, which we describe here. A total of 8,405 research participants, clustered in four-member families, have been successfully genotyped on 527,829 single nucleotide polymorphism (SNP) markers using Illumina's Human660W-Quad array. Quality control screening of samples and markers as well as SNP imputation procedures are described. We also describe methods for ancestry control and how the familial clustering of the MCTFR sample can be accounted for in the analysis using a Rapid Feasible Generalized Least Squares algorithm. The rich longitudinal MCTFR assessments provide numerous opportunities for collaboration.


2018 ◽  
Vol 75 (9) ◽  
pp. 1427-1435 ◽  
Author(s):  
Eef Cauwelier ◽  
John Gilbey ◽  
James Sampayo ◽  
Lee Stradmeyer ◽  
Stuart J. Middlemas

Examination of the genetic basis of the timing of the return migration of Atlantic salmon (Salmo salar) to fresh water from the sea, a trait of economic and conservation interest, was carried out using a genome-wide association study. We examined genotype data of 52 731 single nucleotide polymorphic (SNP) markers from 73 early and 49 late running two-sea-winter salmon from five rivers in eastern Scotland. A single region of the Atlantic salmon chromosome Ssa09 was identified, containing nine SNP markers significantly associated with run timing, a region previously linked to variation in sea age at maturity. Validation of the markers in a group of 233 one- and two-sea-winter fish, including adults from a novel river, again showed significant associations between the trait and the Ssa09 region, explaining ∼24% of the trait variance. The SNP loci identified provide the ability to examine trait variation in populations of Atlantic salmon and so help facilitate conservation management of the differing run timing phenotypes.


Sign in / Sign up

Export Citation Format

Share Document