scholarly journals Facile modulation the sensitivity of Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors through adjusting spatial mode and doping concentration

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Luhui Zhou ◽  
Peng Du ◽  
Li Li

AbstractSeries of Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors were prepared by solid-state reaction technique. All the samples emitted the unique emissions of Eu2+ and Eu3+ ions when excited by 395 nm, while the strongest emission intensity was received when x = 0.03. On the basis of theoretical discussion, it is evident that crossover relaxation should be responsible for the thermal quenching mechanism which was further proved by the unchanged lifetime at elevated temperature. Besides, through analyzing the inconsistent responses of the emission intensities of the Eu2+ and Eu3+ ions to the temperature, the optical thermometric properties of the designed phosphors were studied. By selecting different emissions of Eu3+ ions and combining with that of the Eu2+ ions, adjustable sensitivities were realized in the resultant phosphors. Furthermore, the sensitivities of the studied compound were also found to be greatly affected by the doping concentration. The maximum absolute and relative sensitivities of the synthesized compounds were 0.0025 K−1 and 0.289% K−1, respectively. These achieved results implied that the Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors were promising candidates for optical thermometry. Additionally, this work also provided promising methods to modulate the sensitivities of the luminescent compounds by adjusting spatial mode and doping concentration.

Author(s):  
Bing Yan ◽  
Yi Wei ◽  
Wei Wang ◽  
Meiqian Fu ◽  
Guogang Li

The Eu3+→Mn4+ energy transfer strategy is designed in the Lu3Al5O12 garnet structure to achieve color-adjustable narrow emission from orangish-red to deep-red light and remarkable thermal quenching improvement for optical thermometry sensors.


CrystEngComm ◽  
2020 ◽  
Vol 22 (26) ◽  
pp. 4438-4448 ◽  
Author(s):  
Dongxun Chen ◽  
Liangliang Zhang ◽  
Yanjie Liang ◽  
Weili Wang ◽  
Shao Yan ◽  
...  

Bi2SiO5:Yb3+,Er3+ yolk–shell nanophosphors have been successfully synthesized, which are expected to find important applications in optical thermometry and solid-state lighting.


Author(s):  
Guojun Zhou ◽  
Zhiyang Liu ◽  
Maxim S. Molokeev ◽  
Zewen Xiao ◽  
Zhiguo Xia ◽  
...  

Low-dimensional-networked metal halides are attractive for the screening of emitters applied in solid-state lighting and display, but the lead toxicity and poor stability are obstacles that must be overcome in...


2015 ◽  
Vol 622 ◽  
pp. 120-123 ◽  
Author(s):  
Amador García-Fuente ◽  
Fanica Cimpoesu ◽  
Harry Ramanantoanina ◽  
Benjamin Herden ◽  
Claude Daul ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Stefan Lis ◽  
Krzysztof Staninski ◽  
Tomasz Grzyb

The europium (III) complex of coumarin-3-carboxylic acid (C3CA) has been prepared and characterized on the basis of elemental analysis, IR, and emission (photoluminescence and electrochemiluminescence) spectroscopy. The synthesised complex having a formula Eu was photophysically characterized in solution and in the solid state. Electrochemiluminescence, ECL, of the system containing the Eu(III)/C3CA complex was studied using an oxide-covered aluminium electrode. The goal of these studies was to show the possibility of the use of electrochemical excitation of the Eu(III) ion in aqueous solution for emission generation. The generated ECL emission was very weak, and therefore its measurements and spectral analysis were carried out with the use of cut-off filters method. The studies proved a predominate role of the ligand-to-metal energy transfer (LMET) in the generated ECL.


2016 ◽  
Vol 675-676 ◽  
pp. 527-530
Author(s):  
Thanatep Phatungthane ◽  
Kachaporn Sanjoom ◽  
Denis Russell Sweatman ◽  
Buagun Samran ◽  
Chamnan Randorn ◽  
...  

In the present work, strontium iron niobate SrFe0.5Nb0.5O3 ceramics doped with aluminum were synthesized by a solid-state reaction technique. Phase formation investigation by X-ray diffraction technique (XRD) revealed that all ceramics exhibited pure perovskite phase with orthorhombic symmetry. Grain size observed by electron microscopy (SEM) was found to increase with increasing sintering temperature. The electrical properties and related parameters of the ceramics were also measured. The ceramics exhibit very good dielectric behavior and have a significant potential for dielectric applications.


Sign in / Sign up

Export Citation Format

Share Document