scholarly journals Effect of formaldehyde exposure on bacterial communities in simulating indoor environments

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Guo ◽  
Yi Xiong ◽  
Taisheng Kang ◽  
Hua Zhu ◽  
Qiwen Yang ◽  
...  

AbstractIndoor formaldehyde (CH2O) exceeding the recommended level is a severe threat to human health. Few studies have investigated its effect on indoor surface bacterial communities, affecting habitants' health. This study used 20-L glass containers to mimic the indoor environment with bacterial inputs from human oral respiration. The behavior of bacterial communities responding to CH2O varied among the different CH2O levels. The bacterial community structure significantly changed over time in the 0.054 mg·m−3 CH2O group, which varied from the 0.1 mg·m−3 and 0.25 mg·m−3 CH2O groups. The Chao1 and Shannon index significantly increased in the 0.054 mg·m−3 CH2O group at 6 week, while they remained unchanged in the 0.25 mg·m−3 CH2O group. At 12 week, the Chao1 significantly increased in the 0.25 mg·m−3 CH2O group, while it remained unchanged in the 0.054 mg·m−3 CH2O group. Only a few Operational Taxonomic Units (OTUs) significantly correlated with the CH2O concentration. CH2O-induced OTUs mainly belong to the Proteobacteria and Firmicutes. Furthermore, bacterial communities formed at 6 or 12 weeks differed significantly among different CH2O levels. Functional analysis of bacterial communities showed that inferred genes related to chemical degradation and diseases were the highest in the 0.25 mg·m−3 CH2O group at 12 weeks. The development of nematodes fed with bacteria collected at 12 weeks was applied to evaluate the bacterial community's hazards. This showed significantly impaired growth in the 0.1 mg·m−3 and 0.25 mg·m−3 CH2O groups. These findings confirmed that CH2O concentration and exposure time could affect the indoor bacterial community and formed bacterial communities with a possibly more significant hazard to human health after long-term exposure to high CH2O levels.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


2011 ◽  
Vol 343-344 ◽  
pp. 351-356
Author(s):  
Xia Jia ◽  
Chun Juan Zhou

The effect of long-term elevated CO2(as open top chambers) on rhizosphere and bulk bacterial community structure in Pinus sylvestriformis seedlings field was investigated in July, August, and September. The bacterial communities were processed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis of bacterial 16S rDNA fragments amplified by PCR (Polymerase Chain Reaction) from DNA extracted directly from soil. DGGE profiles from rhizosphere samples showed large changes in rhizosphere bacterial community under elevated CO2compared to ambient except for that in September. For bulk samples, bacterial community structure changed when exposed to elevated CO2in three months. With the exception of bulk samples in August, a similitude of bacterial communities structures existed between different elevated CO2concentrations by analyzing UPGMA dendrogram based on Jaccard’s coefficient.


2020 ◽  
Author(s):  
Regina B. Bledsoe ◽  
Carol Goodwillie ◽  
Ariane L. Peralta

ABSTRACTIn nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast growing copiotrophs, slow growing oligotrophs) and plant (C3 forb, C4 grass) communities residing in a nutrient poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized vs. unfertilized) and plant association (bulk vs. rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass vs. forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease suppressive bacterial taxa and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling.ImportanceOver the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorous deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline and bacterial communities are anticipated to increase in abundance of copiotrophic taxa. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly, of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter the metabolism of rhizosphere bacterial communities in unexpected ways.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2327
Author(s):  
Xiaorong Xu ◽  
Liang Chen ◽  
Hantao Zhou ◽  
Ming Tang

The prevention and control of planthoppers represent important issues for rice production. Current long-term control methods rely on pesticides, which raise concerns about environmental pollution. Recently, evidence has suggested that bacterial symbionts are important factors influencing the formation of Hemiptera insect biotypes and the selection of host plants for insects, which suggesting that targeting bacterial communities may be an effective alternative method for planthopper control. In this study, we perturbed the bacterial communities of the brown planthopper, Nilaparvata lugens, by feeding antibiotic-treated rice and used RNA-seq to examine the transcriptome of normal rice fed with perturbed BPHs by RNA-seq. Our results showed that the composition of the bacterial communities significantly changed after the perturbation, which was accompanied by changes in distinct biological processes of rice, especially the phenylpropanoid biosynthesis pathway, compared with the effect of the BPH feeding on rice without bacterial communities perturbation. Our work establishes a protocol for bacterial communities perturbation in BPH, demonstrating the link between bacterial community and the responses to BPH feeding and providing new insights into the interaction between BPH and rice.


2020 ◽  
Author(s):  
Lei Zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks.Results: The overall community composition and abundance of individual bacterial groups differed between samples. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting from different industrial pollutants may play an important role in determining their co-occurrence patterns of these bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Regina B. Bledsoe ◽  
Carol Goodwillie ◽  
Ariane L. Peralta

ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C3 forb, C4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.


2009 ◽  
Vol 75 (11) ◽  
pp. 3407-3418 ◽  
Author(s):  
Jorge Alonso-Gutiérrez ◽  
Antonio Figueras ◽  
Joan Albaigés ◽  
Núria Jiménez ◽  
Marc Viñas ◽  
...  

ABSTRACT The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected areas with similar characteristics.


2004 ◽  
Vol 70 (2) ◽  
pp. 804-813 ◽  
Author(s):  
Christian Winter ◽  
Arjan Smit ◽  
Gerhard J. Herndl ◽  
Markus G. Weinbauer

ABSTRACT During cruises in the tropical Atlantic Ocean (January to February 2000) and the southern North Sea (December 2000), experiments were conducted to monitor the impact of virioplankton on archaeal and bacterial community richness. Prokaryotic cells equivalent to 10 to 100% of the in situ abundance were inoculated into virus-free seawater, and viruses equivalent to 35 to 360% of the in situ abundance were added. Batch cultures with microwave-inactivated viruses and without viruses served as controls. The apparent richness of archaeal and bacterial communities was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA gene fragments. Although the estimated richness of the prokaryotic communities generally was greatly reduced within the first 24 h of incubation due to confinement, the effects of virus amendment were detected at the level of individual operational taxonomic units (OTUs) in the T-RFLP patterns of both groups, Archaea and Bacteria. One group of OTUs was detected in the control samples but was absent from the virus-treated samples. This negative response of OTUs to virus amendment probably was caused by viral lysis. Additionally, we found OTUs not responding to the amendments, and several OTUs exhibited variable responses to the addition of inactive or active viruses. Therefore, we conclude that individual members of pelagic archaeal and bacterial communities can be differently affected by the presence of virioplankton.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 601
Author(s):  
Paweł Stanisław Wierzchowski ◽  
Jakub Dobrzyński ◽  
Kamila Mazur ◽  
Marek Kierończyk ◽  
Witold Jan Wardal ◽  
...  

Acidified slurry is a novel organic fertilizer that limits gaseous ammonia emissions and reduces nitrogen losses. Our research aimed to determine the effects of short-term fertilization with acidified slurry on the chemical properties and bacterial community of soil used for maize cultivation. In the months after spreading, raw slurry fertilization had a significant impact on the increase in values of N-NO3. In contrast, soil fertilized with acidified slurry had lower N-NO3 values when compared to raw slurry fertilization treatments. Bacterial sequencing using Illumina MiSeq showed no differences in the genetic diversity of bacterial communities. In all tested soil samples, dominants at the phylum level were Actinobacteria, Proteobacteria, and Acidobacteria, while dominants at the class level were Actinobacteria, Alphaproteobacteria, Thermoleophilia, Gammaproteobacteria, and Acidimicrobiia. The values of biodiversity indices (Shannon index, Simpson index) in tested samples were similar. Our results suggest that short-term fertilization with acidified slurry does not adversely affect the biodiversity and structure of the bacterial communities and has a slight impact on soil chemical properties.


2020 ◽  
Author(s):  
lei zhang ◽  
Demei Tu ◽  
Xingchen Li ◽  
Wenxuan Lu ◽  
Jing Li

Abstract Background: The contamination of the aquatic environment of urban rivers with industrial wastewater has affected the abiotic conditions and biological activities of the trophic levels of the ecosystem, particularly sediments. However, most current research about microorganism in urban aquatic environments has focused on indicator bacteria related to feces and organic pollution. Meanwhile, they ignored the interactions among microorganisms. To deeply understand the impact of industrial contamination on microbial community, we study the bacterial community structure and diversity in river sediments under the influence of different types of industrial pollution by Illumina MiSeq high-throughput sequencing technology and conduct a more detailed analysis of microbial community structure through co-occurrence networks.Results: Although the composition of dominant bacterial phyla in different sediment samples was similar, their relative abundance was different. These dominant bacterial phyla showed significant differences in different types of industrial contaminated sediment. In addition, redundancy analysis indicated that the structure of the bacterial community in river sediments was influenced by a variety of environmental factors. TN, TP, TOC and metals (Cu, Zn and Cd) were the most important driving factors that determined the bacterial community in urban river sediments (P <0.01). According to PICRUSt analysis, the bacterial communities in different locations had similar overall functional profiles. It is worth noting that the 15 functional genes related to xenobiotics biodegradation and metabolism were the most abundant in the same location. The non-random assembly patterns of bacterial composition in different types of industrially polluted sediments were determined by a co-occurrence network. Environmental conditions resulting from different industrial pollutants may play an important role in determining their co-occurrence patterns of these bacterial taxa. Among them, the bacterial taxa involved in carbon and nitrogen cycles in module I were relatively abundant, and the bacterial taxa in module II were involved in the repair of metal pollution.Conclusions: Our data indicate that long-term potential interactions between different types of industrial pollution and taxa collectively affect the structure of the bacterial community in urban river sediments.


Sign in / Sign up

Export Citation Format

Share Document