scholarly journals Author Correction: Establishing Virulence Associated Polyphosphate Kinase 2 as a drug target for Mycobacterium tuberculosis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mamta Singh ◽  
Prabhakar Tiwari ◽  
Garima Arora ◽  
Sakshi Agarwal ◽  
Saqib Kidwai ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mamta Singh ◽  
Prabhakar Tiwari ◽  
Garima Arora ◽  
Sakshi Agarwal ◽  
Saqib Kidwai ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2019 ◽  
Vol 20 (3) ◽  
pp. 292-301 ◽  
Author(s):  
Lalit Kumar Gautam ◽  
Prince Sharma ◽  
Neena Capalash

Bacterial infections have always been an unrestrained challenge to the medical community due to the rise of multi-drug tolerant and resistant strains. Pioneering work on Escherichia coli polyphosphate kinase (PPK) by Arthur Kornberg has generated great interest in this polyphosphate (PolyP) synthesizing enzyme. PPK has wide distribution among pathogens and is involved in promoting pathogenesis, stress management and susceptibility to antibiotics. Further, the absence of a PPK orthologue in humans makes it a potential drug target. This review covers the functional and structural aspects of polyphosphate kinases in bacterial pathogens. A description of molecules being designed against PPKs has been provided, challenges associated with PPK inhibitor design are highlighted and the strategies to enable development of efficient drug against this enzyme have also been discussed.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mamta Singh ◽  
Prabhakar Tiwari ◽  
Garima Arora ◽  
Sakshi Agarwal ◽  
Saqib Kidwai ◽  
...  

Abstract Inorganic polyphosphate (PolyP) plays an essential role in microbial stress adaptation, virulence and drug tolerance. The genome of Mycobacterium tuberculosis encodes for two polyphosphate kinases (PPK-1, Rv2984 and PPK-2, Rv3232c) and polyphosphatases (ppx-1, Rv0496 and ppx-2, Rv1026) for maintenance of intracellular PolyP levels. Microbial polyphosphate kinases constitute a molecular mechanism, whereby microorganisms utilize PolyP as phosphate donor for synthesis of ATP. In the present study we have constructed ppk-2 mutant strain of M. tuberculosis and demonstrate that PPK-2 enzyme contributes to its ability to cause disease in guinea pigs. We observed that ppk-2 mutant strain infected guinea pigs had significantly reduced bacterial loads and tissue pathology in comparison to wild type infected guinea pigs at later stages of infection. We also report that in comparison to the wild type strain, ppk-2 mutant strain was more tolerant to isoniazid and impaired for survival in THP-1 macrophages. In the present study we have standardized a luciferase based assay system to identify chemical scaffolds that are non-cytotoxic and inhibit M. tuberculosis PPK-2 enzyme. To the best of our knowledge this is the first study demonstrating feasibility of high throughput screening to obtain small molecule PPK-2 inhibitors.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Stanislav Huszár ◽  
Vinayak Singh ◽  
Alica Polčicová ◽  
Peter Baráth ◽  
María Belén Barrio ◽  
...  

ABSTRACT The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.


2005 ◽  
Vol 79 (6) ◽  
pp. 388-396 ◽  
Author(s):  
Jun MUKAIGAWA ◽  
Miyoko ENDOH ◽  
Yoshitoki YANAGAWA ◽  
Satoshi MOROZUMI

2020 ◽  
Vol 64 (8) ◽  
Author(s):  
Matthew B. McNeil ◽  
Heath W. K. Ryburn ◽  
Liam K. Harold ◽  
Justin F. Tirados ◽  
Gregory M. Cook

ABSTRACT Bedaquiline, an inhibitor of the mycobacterial ATP synthase, has revolutionized the treatment of Mycobacterium tuberculosis infection. Although a potent inhibitor, it is characterized by poorly understood delayed time-dependent bactericidal activity. Here, we demonstrate that in contrast to bedaquiline, the transcriptional inhibition of the ATP synthase in M. tuberculosis and Mycobacterium smegmatis has rapid bactericidal activity. These results validate the mycobacterial ATP synthase as a drug target with the potential for rapid bactericidal activity.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Paridhi Sukheja ◽  
Pradeep Kumar ◽  
Nisha Mittal ◽  
Shao-Gang Li ◽  
Eric Singleton ◽  
...  

ABSTRACT Active tuberculosis (TB) and latent Mycobacterium tuberculosis infection both require lengthy treatments to achieve durable cures. This problem has partly been attributable to the existence of nonreplicating M. tuberculosis “persisters” that are difficult to kill using conventional anti-TB treatments. Compounds that target the respiratory pathway have the potential to kill both replicating and persistent M. tuberculosis and shorten TB treatment, as this pathway is essential in both metabolic states. We developed a novel respiratory pathway-specific whole-cell screen to identify new respiration inhibitors. This screen identified the biphenyl amide GSK1733953A (DG70) as a likely respiration inhibitor. DG70 inhibited both clinical drug-susceptible and drug-resistant M. tuberculosis strains. Whole-genome sequencing of DG70-resistant colonies identified mutations in menG (rv0558), which is responsible for the final step in menaquinone biosynthesis and required for respiration. Overexpression of menG from wild-type and DG70-resistant isolates increased the DG70 MIC by 4× and 8× to 30×, respectively. Radiolabeling and high-resolution mass spectrometry studies confirmed that DG70 inhibited the final step in menaquinone biosynthesis. DG70 also inhibited oxygen utilization and ATP biosynthesis, which was reversed by external menaquinone supplementation. DG70 was bactericidal in actively replicating cultures and in a nutritionally deprived persistence model. DG70 was synergistic with the first-line TB drugs isoniazid, rifampin, and the respiratory inhibitor bedaquiline. The combination of DG70 and isoniazid completely sterilized cultures in the persistence model by day 10. These results suggest that MenG is a good therapeutic target and that compounds targeting MenG along with standard TB therapy have the potential to shorten TB treatment duration. IMPORTANCE This study shows that MenG, which is responsible for the last enzymatic step in menaquinone biosynthesis, may be a good drug target for improving TB treatments. We describe the first small-molecule inhibitor (DG70) of Mycobacterium tuberculosis MenG and show that DG70 has characteristics that are highly desirable for a new antitubercular agent, including bactericidality against both actively growing and nonreplicating mycobacteria and synergy with several first-line drugs that are currently used to treat TB. IMPORTANCE This study shows that MenG, which is responsible for the last enzymatic step in menaquinone biosynthesis, may be a good drug target for improving TB treatments. We describe the first small-molecule inhibitor (DG70) of Mycobacterium tuberculosis MenG and show that DG70 has characteristics that are highly desirable for a new antitubercular agent, including bactericidality against both actively growing and nonreplicating mycobacteria and synergy with several first-line drugs that are currently used to treat TB.


Sign in / Sign up

Export Citation Format

Share Document